User:Patrick/wallpaper groups

From Wikipedia, the free encyclopedia

The region shown is a choice of the possible translation cells with minimum area, except for cm and cmm, where a region of twice that area is shown. The yellow region is a fundamental domain.

Least
rotation
Has reflection?
Yes No
360° / 6
p6m (*632)
Enlarge
p6m (*632)
p6 (632)
Enlarge
p6 (632)
360° / 4
Has mirrors at 45°?
Yes:
p4m (*442)
Enlarge
p4m (*442)
No:
p4g (4*2)
Enlarge
p4g (4*2)
p4 (442)
Enlarge
p4 (442)
360° / 3
Has rotocenter off mirrors?
Yes:
p31m (3*3)
Enlarge
p31m (3*3)
No:
p3m1 (*333)
Enlarge
p3m1 (*333)
p3 (333)
Enlarge
p3 (333)
360° / 2
Has perpendicular reflections?
Yes No
Has rotocenter off mirrors?    
pmg (22*)
Enlarge
pmg (22*)
   
Yes:
cmm (2*22) (the rhombus inside is the translation cell)
Enlarge
cmm (2*22) (the rhombus inside is the translation cell)
No:
pmm (*2222)
Enlarge
pmm (*2222)
Has glide reflection?
Yes:
pgg (22x)
Enlarge
pgg (22x)
No:
p2 (2222)
Enlarge
p2 (2222)
none
Has glide axis off mirrors?
Yes:
cm (*x) (the rhombus inside is the translation cell)
Enlarge
cm (*x) (the rhombus inside is the translation cell)
No:
pm (**)
Enlarge
pm (**)
Has glide reflection?
Yes:
pg (xx)
Enlarge
pg (xx)
No:
p1 (o)
Enlarge
p1 (o)
  • 5x rhombus 60°
  • 2x rhombus, or rectangle in symmetrically staggered rows
  • 3x square
  • 5x rectangle:
    • rectangular grid:
      • p2mm double symmetry
      • p2m single symmetry
      • alternating rows (say hor):
        • pg - each other's mirror image with vertical axis
        • pmg - each rot-2, each other's mirror image
      • pgg - checkerboard pattern, all fields rot-2, with per color in diagonal alternatingly mirror image
  • 2x parallelogram

pmg: a10 b10 d01 c01 a10 b10 d01 c01 a00 b00 d11 c11 a00 b00 d11 c11 c00 d00 b11 a11 c00 d00 b11 a11 c10 d10 b01 a01 c10 d10 b01 a01 a10 b10 d01 c01 a10 b10 d01 c01 a00 b00 d11 c11 a00 b00 d11 c11 c00 d00 b11 a11 c00 d00 b11 a11 c10 d10 b01 a01 c10 d10 b01 a01 a b d c a b d c c d b a c d b a a b d c a b d c c d b a c d b a 10 10 01 01 10 10 01 01 00 00 11 11 00 00 11 11 00 00 11 11 00 00 11 11 10 10 01 01 10 10 01 01 10 10 01 01 10 10 01 01 00 00 11 11 00 00 11 11 00 00 11 11 00 00 11 11 10 10 01 01 10 10 01 01