Orthogonal coordinates

From Wikipedia, the free encyclopedia

In mathematics, orthogonal coordinates are defined as a set of coordinates \mathbf{q} that have no off-diagonal terms in their metric tensor, i.e., the infinitesimal squared distance ds2 can be written as a scaled sum of the squared infinitesimal coordinate displacements

ds^{2} = \sum_{k=1}^{D} \left( h_{k} dq_{k} \right)^{2}

where D is the dimension and the scaling functions h_{k}(\mathbf{q})\ \stackrel{\mathrm{def}}{=}\   \sqrt{g_{kk}(\mathbf{q})} equal the square roots of the diagonal components of the metric tensor. More intuitively, orthogonal coordinate systems are those in which the coordinate surfaces meet at right angles.

Contents

[edit] Vectors and integrals

The distance formula above shows that an infinitesimal change in an orthogonal coordinate dqm is associated with a length dsm = hkdqk. Hence, a differential displacement vector d\mathbf{r} equals

d\mathbf{r} = \sum_{k=1}^{D} h_{k} dq_{k} \mathbf{e}_{k}

where the \mathbf{e}_{k} are the unit vectors normal to their respective surfaces of constant qk. These unit vectors are tangent to the coordinate lines and form the coordinate axes of a local Cartesian coordinate system.

The formulae for the vector dot product and vector cross product remain the same in orthogonal coordinate systems, e.g.,

\mathbf{A} \cdot \mathbf{B} = \sum_{k=1}^{D} A_{k} B_{k}

Thus, a line integral along a contour \mathcal{C} in orthogonal coordinates equals

\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r} =  \sum_{k=1}^{D} \int_{\mathcal{C}} F_{k} h_{k} dq_{k}

where Fk is the component of the vector \mathbf{F} in the direction of the kth unit vector \mathbf{e}_{k}

F_{k} \ \stackrel{\mathrm{def}}{=}\   \mathbf{e}_{k} \cdot \mathbf{F}

Similarly, an infinitesimal element of area dA = dsidsj = hihjdqidqj (where i \neq j) and the infinitesimal volume dV = dsidsjdsk = hdqidqjdqk, where h \ \stackrel{\mathrm{def}}{=}\   h_{i} h_{j} h_{k} and i \neq j \neq k. For illustration, a surface integral over a surface \mathcal{S} in three-dimensional orthogonal coordinates equals

\int_{\mathcal{S}} \mathbf{F} \cdot d\mathbf{A} =  \int_{\mathcal{S}} F_{1} h_{2} h_{3} dq_{2} dq_{3} +  \int_{\mathcal{S}} F_{2} h_{3} h_{1} dq_{3} dq_{1} +  \int_{\mathcal{S}} F_{3} h_{1} h_{2} dq_{1} dq_{2}

[edit] Differential operators in three dimensions

The gradient equals

\nabla \Phi =  \frac{\mathbf{e}_{1}}{h_{1}} \frac{\partial \Phi}{\partial q_{1}} + \frac{\mathbf{e}_{2}}{h_{2}} \frac{\partial \Phi}{\partial q_{2}} + \frac{\mathbf{e}_{3}}{h_{3}} \frac{\partial \Phi}{\partial q_{3}}

The Laplacian equals

\nabla^{2} \Phi =  \frac{1}{h_{1} h_{2} h_{3}}  \left[ \frac{\partial}{\partial q_{1}} \left( \frac{h_{2} h_{3}}{h_{1}} \frac{\partial \Phi}{\partial q_{1}} \right) + \frac{\partial}{\partial q_{2}} \left( \frac{h_{3} h_{1}}{h_{2}} \frac{\partial \Phi}{\partial q_{2}} \right) + \frac{\partial}{\partial q_{3}} \left( \frac{h_{1} h_{2}}{h_{3}} \frac{\partial \Phi}{\partial q_{3}} \right) \right]

The divergence equals

\nabla \cdot \mathbf{F} =  \frac{1}{h_{1} h_{2} h_{3}}  \left[ \frac{\partial}{\partial q_{1}} \left( F_{1} h_{2} h_{3} \right) + \frac{\partial}{\partial q_{2}} \left( F_{2} h_{3} h_{1} \right) +  \frac{\partial}{\partial q_{3}} \left( F_{3} h_{1} h_{2} \right)  \right]

where Fk is again the kth component of the vector \mathbf{F}.

Similarly, the curl equals

\nabla \times \mathbf{F} =  \frac{\mathbf{e}_{1}}{h_{2} h_{3}}  \left[ \frac{\partial}{\partial q_{2}} \left( h_{3} F_{3} \right) -  \frac{\partial}{\partial q_{3}} \left( h_{2} F_{2} \right) \right] +  \frac{\mathbf{e}_{2}}{h_{3} h_{1}}  \left[ \frac{\partial}{\partial q_{3}} \left( h_{1} F_{1} \right) -  \frac{\partial}{\partial q_{1}} \left( h_{3} F_{3} \right) \right] +  \frac{\mathbf{e}_{3}}{h_{1} h_{2}}  \left[ \frac{\partial}{\partial q_{1}} \left( h_{2} F_{2} \right) -  \frac{\partial}{\partial q_{2}} \left( h_{1} F_{1} \right) \right]

[edit] Examples of orthogonal coordinate systems in two dimensions

[edit] Examples of orthogonal coordinate systems in three dimensions

The following coordinate systems are characterized by surfaces of degree two (i.e., quadratic) or lower. They are often used to solve Laplace's equation or the Helmholtz equation, since they allow these equations to be solved by separation of variables.

With the exception of ellipsoidal coordinates, most of these coordinate systems are generated from a two-dimensional orthogonal coordinate system, either by rotating it about a symmetry axis, or by simply projecting it perpendicularly into a third dimension. For example, projecting the two-dimensional polar coodinate system results in the cylindrical coordinate system, whereas rotating it produces the spherical coordinate system.

[edit] References

  • Korn GA and Korn TM. (1961) Mathematical Handbook for Scientists and Engineers, McGraw-Hill, pp. 164-182.
  • Morse PM and Feshbach H. (1953) Methods of Theoretical Physics, McGraw-Hill, pp. 494-523, 655-666.
  • Margenau H. and Murphy GM. (1956) The Mathematics of Physics and Chemistry, 2nd. ed., Van Nostrand, pp.172-192.

[edit] External links