User:Olathe
From Wikipedia, the free encyclopedia
The easiest way to do it is:
- Find b2 − 4ac. If it's a negative number, you can stop, because you can't factor it.
- Get (you already have b2 − 4ac). Let's call it d (for discriminant).
- Now, the factored answer is .
So, let's say we want to factor 2x2 − 11x − 6. Here's the work shown for that :
- (the number inside the square root isn't negative, so you know how to take its square root).
- = 13 (our discriminant is 13).
If you want, you can get rid of the 1/2 in (x + 1/2). You just multiply out 2 (x + 1/2) :
Per the Userbox migration, {{User sushi}} was moved to {{User:Llama man/Userboxes/Sushi}} |
% DIST The distribution problem algorithm. % Finds a way, if possible, to satisfy all demands for supplies when some % source-destination routes have a maximum capacity. % % USAGE % flow = dist(route_maxes, supplies, demands, show_stages) % % OUTPUTS % flow : a way to distribute the supplies; if it is impossible to % satisfy all demands, this is a 1-by-0 empty matrix % % REQUIRED INPUTS % route_maxes : maximum delivery from each source to each destination % (one row per source; one column per destination) % supplies : supplies at each source % demands : demands at each destination % % OPTIONAL INPUTS % show_stages : true to show each stage, false or left out to hide stages % % EXAMPLE % route_maxes = [5 0 4 4 0; 4 4 4 0 1; 3 3 4 5 7; 7 5 0 4 3]; % supplies = [6 9 6 17]'; % demands = [8 5 6 8 10]; % dist(route_maxes, supplies, demands) % % ans = % % 0 0 2 4 0 % 2 2 4 0 1 % 0 0 0 0 6 % 6 3 0 4 3 % by C Erler, 2005 % Public domain, no warranty function flow = dist(route_maxes, supplies, demands, show_stages) if nargin < 4 show_stages = false; end % === Problem preparation === check_preconditions; if sum(demands) > sum(supplies) if show_stages disp(sprintf('The total demand (%d) exceeds the total supply (%d) by %d.', ... sum(demands), sum(supplies), sum(demands) - sum(supplies))); end disp_nonfeasible; flow = zeros(1, 0); return; end if size(supplies, 2) > 1 supplies = supplies'; end if size(demands, 1) > 1 demands = demands'; end surplus = supplies; unmet = demands; flow = zeros(size(route_maxes)); row_labels = zeros(size(route_maxes)); column_labels = zeros(size(route_maxes)); % === Steps 1 and 2 (and 3a) === for source = 1:length(supplies) for destination = 1:length(demands) flow(source, destination) = min([route_maxes(source, destination),... surplus(source), unmet(destination)]); surplus(source) = surplus(source) - flow(source, destination); unmet(destination) = unmet(destination) - flow(source, destination); end end disp_table('Original problem', false); if ~unmet return; end new_rows = surplus; new_columns = zeros(size(demands)); while 1 % === Step 3b === added_column_labels = ... min(route_maxes - flow, repmat(new_rows, 1, length(demands))) .* ... repmat(~sum(column_labels), length(supplies), 1); column_labels = column_labels + added_column_labels; new_columns = max(added_column_labels); if length(find(new_columns > 0)) == 0 disp_nonfeasible; flow = zeros(1, 0); return; end [increase, column] = max(new_columns .* ~~unmet); increase = min(increase, unmet(column)); if increase unmet(column) = unmet(column) - increase; while column row = find(column_labels(:, column) >= increase, 1); flow(row, column) = flow(row, column) + increase; column = find(row_labels(row, :) >= increase, 1); if column flow(row, column) = flow(row, column) - increase; end end surplus(row) = surplus(row) - increase; if ~unmet disp_table('Final result'); return; end disp_table; row_labels = zeros(size(route_maxes)); column_labels = zeros(size(route_maxes)); new_rows = surplus; new_columns = zeros(size(demands)); else % === Step 3c === added_row_labels = ... min(flow, repmat(new_columns, length(supplies), 1)) .* ... repmat(~sum(row_labels')', 1, length(demands)) .* ... repmat(~surplus, 1, length(demands)); row_labels = row_labels + added_row_labels; new_rows = max(added_row_labels')'; if length(find(new_rows > 0)) == 0 disp_nonfeasible; flow = zeros(1, 0); return; end end end % Check preconditions function check_preconditions if ~isvector(supplies), error('supplies must be a vector.'), end if ~isvector(demands), error('demands must be a vector.'), end if size(route_maxes, 1) ~= length(supplies) error('The source count must match in route_maxes and supplies.'); end if size(route_maxes, 2) ~= length(demands) error('The destination count must match in route_maxes and demands.'); end if find(supplies < 0) error('All elements of supplies must be nonnegative.'); end if find(demands < 0) error('All elements of demands must be nonnegative.'); end if find(route_maxes < 0) error('All elements of route_maxes must be nonnegative.'); end end % Display the table nicely. function disp_table(header, add_blank_line) if show_stages data = [route_maxes supplies; demands 0]; data = data .* ~(data == Inf); field_width = max(floor(log10(max(max(data)))) + 1, 3); end_field_format = sprintf('%%s%%%dd : %%%dd', field_width, field_width); field_format = sprintf('%%%dd : %%%dd |', field_width, field_width); end_separator = repmat('-', 1, field_width * 2 + 4); separator = sprintf('%s+', end_separator); no_column_labels = sprintf('%s|', repmat(' ', 1, field_width * 2 + 4)); if nargin < 2 || add_blank_line disp(' '); end if nargin > 0 disp(repmat('=', 1, length(header) + 2)); disp(sprintf(' %s ', header)); disp(repmat('=', 1, length(header) + 2)); end for row = 1:length(supplies) line = ''; line = sprintf(field_format, [route_maxes(row, :); flow(row, :)]); line = sprintf(end_field_format, line, supplies(row), surplus(row)); labels = find(row_labels(row, :) > 0); if surplus(row) > 0 line = sprintf('%s [ S ]', line); elseif labels line = sprintf('%s [%s ]', line, sprintf(' %d', labels)); end disp(line); end disp(sprintf('%s%s', repmat(separator, 1, length(demands)), ... end_separator)); disp(sprintf(field_format, [demands; unmet])); line = ''; for column = 1:size(route_maxes, 2) labels = sprintf(' %d', find(column_labels(:, column) > 0)); if ~strcmp(labels, ' ') labels = sprintf('%s[%s ]%s', ... repmat(' ', 1, floor(field_width - length(labels) / 2)), ... labels, ... repmat(' ', 1, ceil(field_width + 1 - length(labels) / 2))); line = sprintf('%s%s', line, sprintf('%s|', labels)); else line = sprintf('%s%s', line, no_column_labels); end end disp(line); end end % Inform the user that there is no feasible solution. function disp_nonfeasible if show_stages disp(' '); disp('+-----------------------+'); disp('| No feasible solution. |'); disp('+-----------------------+'); end end end
[edit] Systems of equations
You will be given a bunch of equations and asked to find what all the variables equal :
37a + 5b + 11c + 2d = 5e + 35 6a + d + 250e - 9 = 2 240a + 11b + 12c + 4e + 5 = 0 56a + 10b + d + 5e = 2 2c + 30d = 1 - 15e
Get them in the form variables = number.
37a + 5b + 11c + 2d - 5e = 35 6a + d + 250e = 11 240a + 11b + 12c + 4e = -5 56a + 10b + d + 5e = 2 2c + 30d + 15e = 1
Make a table with columns for each of the variables and a column for the number on the other side of each equation :
This is how you want it to look (the stars can be anything) :
The important part is that each row starts with a one and it starts a little later than the rows before, even if it looks something like this :
Even though the each new row doesn't start exactly one square behind the last one, they all still start with one and start later and later.
You can now use three rules to change this around :
- Change the order of the rows however you want.
- Multiply everything on a row by any number except zero.
- Add or subtract a row from another.