Olami-Feder-Christensen model
From Wikipedia, the free encyclopedia
In physics, in the area of dynamical systems, the Olami-Feder-Christensen model is an example of self-organized criticality where local exchange dynamics are not conservative.
[edit] References
- Christensen, K. and Olami, Z. (1992). "Variation of the Gutenberg-Richter b values and nontrivial temporal correlations in a spring-block model for earthquakes". Journal of Geophysical Research B 97: 8729–8735.
- Grassberger, P. (1994). "Efficient large-scale simulations of a uniformly driven system". Physical Review E 49: 2436–2444. DOI:10.1103/PhysRevE.49.2436.
- Lise, S. and Paczuski, M. (2001). "Self-organized criticality and universality in a nonconservative earthquake model". Physical Review E 63: 036111. DOI:10.1103/PhysRevE.63.036111.
- Lise, S. and Paczuski, M. (2001). "Scaling in a nonconservative earthquake model of self-organized criticality". Physical Review E 64: 046111. DOI:10.1103/PhysRevE.64.046111.
- Olami, Z., Feder, H. J. S. and Christensen, K. (1992). "Self-organized criticality in a continuous, nonconservative cellular automaton modeling earthquakes". Physical Review Letters 68: 1244–1247. DOI:10.1103/PhysRevLett.68.1244.