Neighborhood semantics

From Wikipedia, the free encyclopedia

Neighborhood semantics, also known as Scott-Montague semantics, is a formal semantics for modal logics. It is a generalization, developed independently by Dana Scott and Richard Montague, of the more widely known relational semantics for modal logic. Whereas a relational frame \langle W,R\rangle consists of a set W of worlds (or states) and an accessibility relation R intended to indicate which worlds are alternatives to (or, accessible from) others, a neighborhood frame \langle W,N\rangle still has a set W of worlds, but has instead of an accessibility relation a neighborhood function

N : W \to 2^{2^W}.

So N assigns to each w\in W a set of subsets of W. The idea is that we can give a definition of truth in the modal case via this assignment. Specifically, if M is a model on the frame, then

M,w\models\square A \Longleftrightarrow (A)^M \in N(w),

where (A)^M = \{u\in W \mid M,u\models A \}, the truth set of A.


[edit] References

  • Scott, D. "Advice in modal logic", in Philosophical Problems in Logic, ed. Karel Lambert. Reidel, 1970.
  • Montague, R. "Universal Grammar", Theoria 36, 373-98, 1970.
  • Chellas, B.F. Modal Logic. Cambridge University Press, 1980.