Nathan M. Newmark

From Wikipedia, the free encyclopedia

Nathan M. Newmark (September 22, 1910 - January 25, 1981) was an American engineer and academic. He was awarded the National Medal of Science for engineering.

Contents

[edit] Early life

Newmark was born in Plainfield, New Jersey to Abraham and Mollie Newmark. After receiving his early education in North Carolina and New Jersey, he went on to attend Rutgers University. Newmark graduated from Rutgers in 1930 earning High Honors and Special Honors in civil engineering. He married Anne Cohen in 1931.

Nathan M. Newmark started his college career at Rutgers University. Newmark then attended graduate school at the University of Illinois at Urbana-Champaign where he worked under Hardy Cross, Harold M. Westergaard, and Frank E. Richart.

[edit] At the University of Illinois

In 1932 and 1934 he received his M.S. and Ph.D. degrees, respectively, in civil engineering from the University of Illinois at Urbana-Champaign. After graduating from UIUC, Newmark was appointed to many prestigious positions in the department. He became Research Professor of Civil Engineering in 1943. He served as Chairman of the Digital Computer Laboratory of the University from 1947 to 1957 and in 1956 he was appointed head of the Civil Engineering Department and held the position until 1973. Newmark held many important leadership positions and the reputation of the longest tenure on the University Research Board. He continued as a professor there until he retired with a rank of Professor Emeritus. Under his leadership, the program at the University of Illinois at Urbana-Champaign soared to new heights.

[edit] Hardy Cross

Hardy Cross, who Newmark worked under at the University of Illinois in Urbana, developed the moment distribution method. It enabled designers to calculate statically indeterminate frames of reinforced concrete. Newmark looked up to Cross, in Cross’s book Arches, Continuous Frames, Columns and Conduits, Newmark wrote the introduction, in which he tells how much he enjoyed the classes taught by Cross and how they would sometimes walk home together after classes and discuss engineering principles.

[edit] Accomplishments

In 1959, Newmark introduced what became known as the Newmark-beta method of numerical integration used to solve differential equations. He later helped to develop the first digital computers, the ILLIAC II, which was one of the first transistorized computers. It was also designed to use transistors that were not even invented yet. The ILLIAC-II eventually led to the development of computer software for engineering.

Another of Newmark's accomplishments was the Torre Latinoamericana (Latin American Tower) in Mexico City, Mexico, the tallest building in Mexico City until 1984. Newmark was the consulting engineer on the project. He designed the building to be supported by the muddy soil underneath the structure and be able to withstand earthquakes. The design was put to the test in 1957 when an earthquake struck the city, and again in the stronger earthquake of 1985. The Torre Latinoamericana withstood the quakes and is still standing today. Throughout his career Newmark developed a simple, yet powerful and widely used method for analyzing complex structural components and assemblies under a variety of conditions of loading and for calculating the stresses and deformations in soil beneath foundations. He also was an engineer on the construction of the Trans-Alaska Pipeline.

In 1968, he was recipient of the National Medal of Science for Engineering Sciences. He was elected Fellow of the American Academy of Arts and Sciences, and received the 1979 John Fritz Medal and several other awards. The American Society of Civil Engineers has named a medal after him, which is awarded "to a member of the American Society of Civil Engineers who, through contributions in structural mechanics, has helped substantially to strengthen the scientific base of structural engineering." [1]