Muon

From Wikipedia, the free encyclopedia

Muon

The Moon's cosmic ray shadow, as seen in secondary muons detected 700m below ground, at the Soudan 2 detector.
Composition: Elementary particle
Family: Fermion
Group: Lepton
Generation: Second
Interaction: Gravity, Electromagnetic,
Weak
Antiparticle: Antimuon
Discovered: Carl D. Anderson, 1936
Mass: 105.658369(9) MeV/c2
Electric charge: −1 e
Color charge: None
Spin: ½

The muon (from the letter mu (μ) used to represent it) is an elementary particle with negative electric charge and a spin of 1/2. It has a lifetime of 2.2μs, longer than any other unstable lepton, meson or baryon except for the neutron. Together with the electron, the tau and the neutrinos, it is classified as a lepton. Like all fundamental particles, the muon has an antimatter partner of opposite charge but equal mass and spin: the antimuon. Muons are denoted by μ and antimuons by μ+.

For historical reasons, muons are sometimes referred to as mu mesons, even though they are not classified as mesons by modern particle physicists (see History). Muons have a mass of 105.6 MeV/c2, which is 206.7 times the electron mass. Since their interactions are very similar to those of the electron, a muon can be thought of as a much heavier version of the electron. Due to their greater mass, muons do not emit as much bremsstrahlung radiation; consequently, they are much more penetrating than electrons.

As with the case of the other charged leptons, there is a muon-neutrino which has the same flavor as the muon. Muon-neutrinos are denoted by νμ.

Contents

[edit] Muon sources

Since the production of muons requires an available COM frame energy of over 105 MeV, neither ordinary radioactive decay events, or nuclear fission and fusion events (such as happen in nuclear reactors and nuclear weapons), are energetic enough to produce muons. Only nuclear fission produces single-nuclear-event energies in this range, but due to conservation constraints, this is not available to produce since particles such as the muon.

On earth, all naturally occurring muons are apparently created by cosmic rays, which consist mostly of protons, many arriving from deep space at very high energy. When a cosmic ray proton impacts atomic nuclei of air atoms in the upper atmosphere, pions are created. These decay within an relatively short distance (meters) into muons (the pion's favorite decay product), and neutrinos. The muons from these high energy cosmic rays, generally continuing essentially in the same direction as the original proton, do so at very high velocities. Despite their lifetime, which with relativistic effects would allow a half-survival distance of only about 0.66 km at most, the time dilation effect of special relativity allows cosmic ray secondary muons to survive the flight to the earth's surface. Indeed, since muons are unusually penetrative of ordinary matter, like neutrinos they are also detectable deep underground and underwater, where they form a major part of the natural background ionizing radiation. Like cosmic rays, as noted, this secondary muon radiation is also directional. See the illustration above of the moon's cosmic ray shadow, detected when 700 m of soil and rock filters secondary radiation, but allows enough muons to form a crude image of the moon, in a directional detector.

The same nuclear reaction described above (i.e., hadron-hadron impacts to produce pion beams, which then quickly decay to muon beams over short distances) is used by particle physicists to produce muon beams, such as the beam used for the muon g-2 gyromagnetic ratio experiment (see link below). In naturally-produced muons, the very high-energy protons to begin the process are thought to originate from acceleration by electromagnetic fields over long distances between stars or galaxies, in a manner somewhat analogous to the mechanism of proton acceleration used in laboratory particle accelerators.

[edit] Muon decays

The most common decay of the muon involves a W boson
The most common decay of the muon involves a W boson

Since muons are the lightest charged particle except for the electron, they must decay to an electron and other particles with a net charge of zero. Nearly all of the time, they decay into an electron, an electron-antineutrino, and a muon-neutrino. Antimuons decay to a positron, an electron-neutrino, and a muon-antineutrino:

\mu^-\to e^-\bar\nu_e\nu_\mu,~~~\mu^+\to e^+\nu_e\bar\nu_\mu.

Rarely, a photon or electron-positron pair is also present in the decay products.

[edit] Muonic atoms

The muon was the first elementary particle discovered that does not appear in ordinary atoms. Negative muons can, however, form muonic atoms by replacing an electron in ordinary atoms. Muonic atoms are much smaller than typical atoms because the larger mass of the muon gives it a smaller ground-state wavefunction than the electron.

A positive muon, when stopped in ordinary matter, can also bind an electron and form the muonium (Mu) "atom," in which the muon acts as the "nucleus." Such substances do not actually fall under the formal definition of the chemical atom, though they share some properties. The reduced mass of muonium, hence its Bohr radius, is very close to that of hydrogen, hence this short lived "atom" behaves chemically − in first approximation − like its heavier isotopes, hydrogen, deuterium and tritium.

[edit] History

Muons were discovered by Carl D. Anderson in 1936 while he studied cosmic radiation. He had noticed particles that curved in a manner distinct from that of electrons and other known particles when passed through a magnetic field. In particular, these new particles curved to a smaller degree than electrons, but more sharply than protons. It was assumed that their electric charge was equal to that of the electron, and so to account for the difference in curvature, it was supposed that these particles were of intermediate mass (lying somewhere between that of an electron and that of a proton).

For this reason, Anderson initially called the new particle a mesotron, adopting the prefix meso- from the Greek word for "intermediate". Shortly thereafter, additional particles of intermediate mass were discovered, and the more general term meson was adopted to refer to any such particle. Faced with the need to differentiate between different types of mesons, the mesotron was renamed the mu meson (with the Greek letter μ (mu) used to approximate the sound of the Latin letter m).

However, it was soon found that the mu meson significantly differed from other mesons; for example, its decay products included a neutrino and an antineutrino, rather than just one or the other, as was observed in other mesons. Other mesons were eventually understood to be hadrons, that is, particles made of quarks, and thus subject to the residual strong force. In the quark model, each meson is composed of two quarks. Mu mesons, however, were found to be fundamental particles (leptons) like electrons, with no quark structure. Thus mu mesons were not mesons at all (in the new sense of the term), and so the term mu meson was abandoned, and replaced with the modern term muon.

[edit] See also

[edit] External links

[edit] References

  • S.H. Neddermeyer and C.D. Anderson, "Note on the Nature of Cosmic-Ray Particles", Phys. Rev. 51, 884–886 (1937). Full text available in PDF.
  • Serway & Faughn, College Physics, Fourth Edition (Fort Worth TX: Saunders, 1995) page 841
  • Emanuel Derman, My Life As A Quant (Hoboken, NJ: Wiley, 2004) pp. 58-62.
  • Marc Knecht ; The Anomalous Magnetic Moments of the Electron and the Muon, Poincaré Seminar (Paris, Oct. 12, 2002), published in : Duplantier, Bertrand; Rivasseau, Vincent (Eds.) ; Poincaré Seminar 2002, Progress in Mathematical Physics 30, Birkhäuser (2003) [ISBN 3-7643-0579-7]. Full text available in PostScript.


 v  d  e 
Particles in physics - elementary particles
Fermions: Quarks: (Up · Down · Strange · Charm · Bottom · Top) | Leptons: (Electron · Muon · Tau · Neutrinos)
Gauge bosons: Photon | W and Z bosons | Gluons
Not yet observed: Higgs boson | Graviton | Other hypothetical particles