Multi-index notation

From Wikipedia, the free encyclopedia

The notion of multi-indices simplifies formulae used in the multivariable calculus, partial differential equations and the theory of distributions, by generalising the concept of an integer index to an array of indices.

An n-dimensional multi-index is a vector

\alpha = (\alpha_{1}, \alpha_{2},\ldots,\alpha_{n})

with integers αi. For multi-indices \alpha, \beta \in \mathbb{N}^n and \mathbf{x} = (x_{1}, x_{2}, \ldots, x_{n}) \in \mathbb{R}^n one defines:

\alpha \pm \beta:= (\alpha_{1} \pm \beta_{1},\,\alpha_{2} \pm \beta_{2}, \ldots, \,\alpha_{n} \pm \beta_{n})
\alpha \le \beta \quad \Leftrightarrow \quad \alpha_{i} \le \beta_{i} \quad \forall\,i
| \alpha | = \alpha_{1} + \alpha_{2} + \ldots + \alpha_{n}
\alpha ! = \alpha_{1}! \alpha_{2}! \ldots \alpha_{n}!
{\alpha \choose \beta} = \frac{\alpha!}{(\alpha - \beta)! \, \beta!}={\alpha_{1} \choose \beta_{1}}{\alpha_{2} \choose \beta_{2}}\ldots{\alpha_{n} \choose \beta_{n}}
\mathbf{x}^\alpha = x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \ldots x_{n}^{\alpha_{n}}
D^{\alpha} := D_{1}^{\alpha_{1}} D_{2}^{\alpha_{2}} \ldots D_{n}^{\alpha_{n}} where D_{i}^{j}:=\part^{j} / \part x_{i}^{j}

The notation allows to extend many formula from elementary calculus to the corresponding multi-variable case. Some examples of common applications of multi-index notations:

Multinomial expansion:

\left( \sum_{i=1}^{n}{x_i}\right)^k = \sum_{|\alpha|=k}^{}{\frac{k!}{\alpha!} \, \mathbf{x}^{\alpha}}

Leibniz formula: for smooth functions u, v

D^{\alpha}(uv) = \sum_{\nu \le \alpha}^{}{{\alpha \choose \nu}D^{\nu}u\,D^{\alpha-\nu}v}

Taylor series: for an analytic function f one has

f(\mathbf{x}+\mathbf{h}) = \sum_{|\alpha| \ge 0}^{}{\frac{D^{\alpha}f(\mathbf{x})}{\alpha !}\mathbf{h}^{\alpha}}

A formal N-th order partial differential operator in n variables is written as

P(D) = \sum_{|\alpha| \le N}{}{a_{\alpha}(x)D^{\alpha}}

Partial integration: for smooth functions with compact support in a bounded domain \Omega \subset \mathbb{R}^n one has

\int_{\Omega}{}{u(D^{\alpha}v)}\,dx = (-1)^{|\alpha|}\int_{\Omega}^{}{(D^{\alpha}u)v\,dx}

This formula is used for the definition of distributions and weak derivatives.

[edit] Theorem

Theorem If i,k are multi-indices in \mathbb{N}^n, and x=(x_1,\ldots, x_n), then

\part^i x^k =  \left\{\begin{matrix}  \frac{k!}{(k-i)!} x^{k-i} & \hbox{if}\,\, i\le k\\   0 & \hbox{otherwise.} \end{matrix}\right.


Proof. The proof follows from the corresponding rule for the ordinary derivative; if i,k are in 0,1,2,\ldots, then

\frac{d^i}{dx^i} x^k = \left\{ \begin{matrix} \frac{k!}{(k-i)!} x^{k-i} & \hbox{if}\,\, i\le k, \\ 0 & \hbox{otherwise.} \end{matrix}\right.. (1)

Suppose i=(i_1,\ldots, i_n), k=(k_1,\ldots, k_n), and x=(x_1,\ldots, x_n). Then we have that

\part^i x^k = \frac{\part^{\vert i\vert}}{\part x_1^{i_1} \cdots \part x_n^{i_n}} x_1^{k_1} \cdots x_n^{k_n}
= \frac{\part^{i_1}}{\part x_1^{i_1}} x_1^{k_1} \cdots \frac{\part^{i_n}}{\part x_n^{i_n}} x_n^{k_n}.

For each r=1,\ldots, n, the function x_r^{k_r} only depends on xr. In the above, each partial differentiation \part/\part x_r therefore reduces to the corresponding ordinary differentiation d / dxr. Hence, from equation 1, it follows that \part^i x^k vanishes if ir > kr for any r=1,\ldots, n. If this is not the case, i.e., if i\le k as multi-indices, then for each r,

\frac{d^{i_r}}{dx_r^{i_r}} x_r^{k_r} = \frac{k_r!}{(k_r-i_r)!} x_r^{k_r-i_r},

and the theorem follows. \Box
This article incorporates material from multi-index derivative of a power on PlanetMath, which is licensed under the GFDL.

In other languages