Mollweide projection
From Wikipedia, the free encyclopedia
The Mollweide projection is a non-geometric map projection used for geographic maps of the world, also known as the Babinet projection, or elliptical projection. As its more explicit moniker Mollweide equal area projection indicates it sacrifices fidelity to angle and shape in favor of accurate depiction of area. It is used primarily where accurate representation of area takes precedence over shape, for instance small maps depicting global distributions.
The projection was first published by mathematician and astronomer Karl (or Carl) Brandan Mollweide (1774 – 1825) of Leipzig in 1805 as an improvement upon the Mercator projection. It was popularized by Jacques Babinet in 1857. The projection is:
where is an auxiliary angle defined by
and is the longitude from the central meridian, and is the latitude.
The Mollweide is a pseudocylindrical projection in which the equator is represented as a straight horizontal line perpendicular to a central meridian one-half its length. The other parallels compress near the poles, while the other meridians are equally spaced at the equator. The meridians at 90 degrees east and west form a perfect circle, and the whole earth is depicted in a proportional 2:1 ellipse. The proportion of the area of the ellipse between any given parallel and the equator is the same as the proportion of the area on the globe between that parallel and the equator, but at the expense of shape distortion, which is significant at the corners, although not as severe as in the sinusoidal projection.
Shape distortion may be diminished by using an interrupted version. A sinusoidal interrupted Mollweide projection discards the central meridian in favor of alternating half-meridians which terminate at right angles to the equator. This has the effect of dividing the globe into lobes shape. In contrast, a parallel interrupted Mollweide projection uses multiple disjoint central meridians, giving the effect of multiple ellipses joined at the equator. More rarely, the project can be drawn obliquely to shift the areas of distortion to the oceans, allowing the continents to remain truer to form.
Because the Mollweide is a proportional ellipse, it has proved versatile in the creation of many hybrid projections, including the Goode's homolosine, the Robinson, and the Boggs.
[edit] External links
- Table of examples and properties of all common projections, from radicalcartography.net