Milliken-Taylor theorem

From Wikipedia, the free encyclopedia

In mathematics, the Milliken-Taylor theorem in combinatorics is a generalization of both Ramsey's theorem and Hindman's theorem. It is named after Keith Milliken and Alan D. Taylor.

Let \mathcal{P}_f(\mathbb{N}) denote the set of finite subsets of \mathbb{N}. Given a sequence of integers \langle a_n \rangle_{n=0}^{\infty} \subset \mathbb{N} and k>0 let

[FS(\langle a_n \rangle_{n=0}^{\infty})]^k_< = \left \{ \left \{ \sum_{t \in \alpha_1}x_t, ... , \sum_{t \in \alpha_k}x_t \right \}: \alpha_1 <...< \alpha_k \in \mathcal{P}_f(\mathbb{N}) \right \},

where \alpha < \beta \in \mathcal{P}_f(\mathbb{N}) if and only if maxα<maxβ. Let [S]k denote the k-element subsets of a set S. The Milliken-Taylor theorem says that for any finite partition [\mathbb{N}]^k=C_1 \cup C_2 \cup ... \cup C_r, there exist some i<r+1 and a sequence \langle x_n \rangle_{n=0}^{\infty} \subset \mathbb{N} such that [FS(\langle a_n \rangle_{n=0}^{\infty})]^k_< \subset C_i.

For each \langle a_n \rangle_{n=0}^{\infty} \subset \mathbb{N}, call [FS(\langle a_n \rangle_{n=0}^{\infty})]^k_< an MTk set. Then, alternatively, the Milliken-Taylor theorem asserts that the collection of MTk sets is partition regular for each k.

[edit] References

  1. K. Milliken, Ramsey's Theorem with sums or unions, J. Comb. Theory (Series A) 18 (1975), 276-290
  2. A. Taylor, A canonical partition relation for finite subsets of ω, J. Comb. Theory (Series A) 21 (1976), 137-146