Metal halide lamp

From Wikipedia, the free encyclopedia

Metal halide lamps, a member of the high-intensity discharge (HID) family of lamps, produce high light output for their size, making them a compact, powerful, and efficient light source. Originally created in the late 1960's for industrial use, metal halide lamps are now available in numerous sizes and configurations for commercial and residential applications. Like most HID lamps, metal halide lamps operate under high pressure and temperature, and require special fixtures to operate safely. They are also considered a "point" light source, so reflective luminaires are often required to concentrate the light for purposes of the lighting application.

Contents

[edit] Operation

Like other gas-discharge lamps such as the very-similar mercury-vapor lamps, metal halide lamps produce light by passing an electric arc through a mixture of gases. In a metal halide lamp, the compact arc tube contains a high-pressure mixture of argon, mercury, and a variety of metal halides. The mixture of halides will affect the nature of light produced, influencing the correlated color temperature and intensity (making the light bluer, or redder, for example). The argon gas in the lamp is easily ionized, and facilitates striking the arc across the two electrodes when voltage is first applied to the lamp. The heat generated by the arc then vaporizes the mercury and metal halides, which produce light as the temperature and pressure increases.

Like all other gas discharge lamps, metal halide lamps require auxiliary equipment to provide proper starting and operating voltages and regulate the current flow in the lamp.

About 24% of the energy used by metal halide lamps produces light (65-115 lm/W[1]), making them generally more efficient than fluorescent lamps, and substantially more efficient than incandescent bulbs.

[edit] Components

Metal halide lamps consist of the following main components. They have a metal base (in some cases they are double-ended) that allows an electrical connection. They are covered with an outer glass shield (or glass bulb) to protect the inner components and provide a shield to UV light generated by the mercury vapor. Inside the glass shield, a series of support and lead wires hold the inner fused quartz arc tube and its embedded tungsten electrodes. It is within the arc tube that the light is actually created. Besides the mercury vapor, the lamp contains iodides or sometimes bromides of different metals and noble gas. The composition of the metals used defines the color of the lamp.

Many types have alumina arc tube instead of quartz like high pressure sodium lamps have. They are usually referred as ceramic metal halide or CMH.

Some bulbs have a phosphor coating on the inner side of the outer bulb to diffuse the light.

[edit] Ballasts

Metal halide lamps require ballasts to regulate the arc current flow and deliver the proper voltage to the arc. Some larger metal halide bulbs contain a special 'starting' electrode within the lamp to initiate the arc when the lamp is first lit (which generates a slight flicker when the lamp is first turned on). Smaller metal halide lamps do not require a starting electrode, and instead use a special starting circuit within the ballast to generate a high-voltage pulse to the operating electrodes. American National Standards Institute (ANSI) lamp-ballast system standards establish parameters for all metal halide components (with the exception of some newer products).

A few electronic ballasts are now available for metal halide lamps. The benefit of these ballasts is more precise management of the lamp's wattage, which provides more consistent color and longer lamp life. In some cases, electronic ballasts are reported to increase efficiency (i.e. reduce electrical usage). However with few exceptions, high-frequency operation does not increase lamp efficiency as in the case of high-output (HO) or very high-output (VHO) fluorescent bulbs.

[edit] Color temperature

Metal halide lamps were initially preferred to mercury vapor lamps in instances where natural light was desired because of the whiter light generated (mercury vapor lamps generating light that was much bluer). However the distinction today is not as great. Some metal halide lamps can deliver very clean "white" light that has a color-rendering index (CRI) in the 80's. With the introduction of specialized metal halide mixtures, metal halide lamps are now available that can have a correlated color temperature as low as 3000K (very yellow) to 20,000K (very blue). Some specialized lamps have been created specifically for the spectral absorption needs of plants (hydroponics and indoor gardening) or animals (indoor aquariums). Perhaps the most important point to keep in mind is that, due to tolerances in the manufacturing process, color temperature can vary slightly from lamp to lamp, and the color properties of metal halide bulbs cannot be predicted with 100% accuracy. Moreover, color properties can change over the lifetime of the bulb.

[edit] Starting and warm up

A cold metal halide lamp cannot immediately begin producing its full light capacity because the temperature and pressure in the inner arc chamber require time to reach full operating levels. Starting the initial argon arc sometimes takes a few seconds, and the warm up period can be as long as five minutes (depending upon lamp type). During this time the lamp exhibits different colors as the various metal halides vaporize in the arc chamber.

If power is interrupted, even briefly, the lamp's arc will extinguish, and the high pressure that exists in the hot arc tube will prevent re-striking the arc; a cool-down period of 5-10 minutes will be required before the lamp can be re-started. This is a major concern in some lighting applications where prolonged lighting interruption could create manufacturing shut-down or a safety issue. A few metal halide lamps are made with "instant restrike" capabilities that use a ballast with very high operating voltages (30,000 volts) to restart a hot lamp.

[edit] See also

[edit] References

  • Waymouth, John (1971). Electric Discharge Lamps. Cambridge, MA: The M.I.T. Press. ISBN 0-262-23048-8.
  1. ^ http://www.venturelighting.com/TechCenter/Metal-Halide-TechIntro.html

[edit] External links

Lighting and Lamps
v  d  e
Incandescent: Conventional - Halogen - Parabolic aluminized reflector (PAR) Compact fluorescent lightbulb
Fluorescent: Compact fluorescent (CFL) - Linear fluorescent - Induction lamp
Gas discharge:  High-intensity discharge (HID) - Mercury-vapor - Metal-halide - Neon - Sodium vapor
Electric arc: Arc lamp - HMI - Xenon arc - Yablochkov candle
Combustion: Acetylene/Carbide - Candle - Gas lighting - Kerosene lamp - Limelight - Oil lamp - Safety lamp
Other types: Sulfur lamp - Light-emitting diode (LED) - Fiber optics - Plasma
In other languages