Megascale engineering
From Wikipedia, the free encyclopedia
Megascale engineering is a type of engineering (currently a form of exploratory engineering) concerned with the construction of structures on an enormous scale. Typically these structures are at least 1,000 kilometers in length -- in other words, at least 1 Megameter, hence the name. Such large-scale structures are termed megastructures.
In addition to large-scale structures, megascale engineering is also defined as including the transformation of entire planets into a human-habitable environment, a process known as terraforming or planetary engineering. This might also include transformation of the surface conditions, changes in the planetary orbit, and structures in orbit intended to modify the energy balance.
Astroengineering is the extension of megascale engineering to megastructures on a stellar scale or larger, such as Dyson spheres, Ringworlds, and Alderson disks.
Megascale engineering often plays a major part in the plot of science fiction movies and books. The micro-gravity environment of outer space provides several potential benefits for the engineering of these structures. These including minimizing the loads on the structure, the availability of large quantities of raw materials in the form of asteroids, and an ample supply of energy from the Sun. The capabilities to employ these advantages is not yet available, however, so they provide material for science fiction themes.
Quite a few megastructures have been designed on paper as exploratory engineering. However, the list of existing and planned megastructures is complicated by the fact that there are no universally agreed-upon criteria for a structure to be called a megastructure. By the most strict definitions, no megastructures currently exist (with the space elevator being the only such project under serious consideration as of 2005). By more lenient definitions, the Great Barrier Reef (2 Mm) and the Great Wall of China (6.7 Mm) count as artificially-assembled megastructures.
A more complete list of conceptual and existing megastructures, along with a discussion of megastructure criteria, is found under megastructure.
Of all the proposed megastructures, only the orbital elevator could be built using conventional engineering techniques, and is almost within the grasp of current material science. Carbon nanotubes may have the requisite tensile strength (for a more detailed discussion see the article "space elevator"), but creation of such nanotubes is as-of-yet a laboratory exercise. Production of nanotubes in industrial quantities is not yet possible.
The assembly of structures more massive than a space elevator would likely involve a combination of new engineering techniques, new materials, and new technologies. Such massive construction projects might require the use of self-replicating machines to provide a suitably large "construction crew". The use of nanotechnology might provide both the self-replicating assemblers, and the specialized materials needed for such a project. Nanotechnology is, however, another area of speculative exploratory engineering at this time.
[edit] See also
- Astroengineering
- Big Dumb Object
- Kardashev scale
- Megastructure
- Nanotechnology and Molecular engineering involve very tiny structures.
- Space manufacturing
- Space elevator
- Stellar engineering