Martensite

From Wikipedia, the free encyclopedia

Iron alloy phases

Austenite (γ-iron; hard)
Bainite
Martensite
Cementite (iron carbide; Fe3C)
Ledeburite (ferrite - cementite eutectic, 4.3% carbon)
Ferrite (α-iron; soft)
Pearlite (88% ferrite, 12% cementite)

Types of Steel

Plain-carbon steel (up to 2.1% carbon)
Stainless steel (alloy with chromium)
HSLA steel (high strength low alloy)
Tool steel (very hard; heat-treated)

Other Iron-based materials

Cast iron (>2.1% carbon)
Wrought iron (almost no carbon)
Ductile iron

Martensite in AISI 4140 steel
Enlarge
Martensite in AISI 4140 steel

Martensite, named after the German metallurgist Adolf Martens (1850-1914), is any crystal structure that was formed by displacive transformation, as opposed to much slower diffusive transformations. It includes a class of hard minerals occurring as lathe- or plate-shaped crystal grains. When viewed in cross-section, the lenticular (lens-shaped) crystal grains appear acicular (needle-shaped), which is how they are sometimes incorrectly described. "Martensite" most commonly refers to a form of ferrite supersaturated with carbon found in very hard steels, for use in such products as springs and piano wire. The martensite is formed by rapid cooling (quenching) of austenite which traps carbon atoms that do not have time to diffuse out of the crystal structure.

In the 1890s, Martens studied samples of different steels under a microscope, and found that the hardest steels had a regular crystalline structure. He was the first to explain the cause of the widely differing mechanical properties of steels. Martensitic structures have since been found in many other practical materials, including shape memory alloys and transformation-toughened ceramics.

Martensite has a very similar crystalline structure to austenite, and identical chemical composition. As such, a transition between these two allotropes requires very little thermal activation energy, and has been known to occur even at cryogenic temperatures. Martensitic ferrite has a lower density than austenite, so that the martensitic transformation results in a relative change of volume:[1] this can be seen vividly in the Japanese Katana, which is straight before quenching. Differential quenching causes martensite to form predominantly in the edge of the blade rather than the back; as the edge expands, the blade takes on a gently curved shape.

Martensite is usually considered to be a grain structure not a phase. For this reason, martensite is not shown in the equilibrium phase diagram of the iron-carbon system. It consists of grains of ferrite supersaturated with carbon.[1] It is only distinct from ordinary ferrite in that its transition between the stable phases rely on displacive transformation rather than diffusion and nucleation, both of which can be very slow.

Since chemical processes accelerate at higher temperature, martensite is easily destroyed by the application of heat. In some alloys, this effect is reduced by adding elements such as tungsten that interfere with cementite nucleation, but, more often than not, the phenomenon is exploited instead. Since quenching can be difficult to control, most steels are quenched to produce an overabundance of martensite, then tempered to gradually reduce its concentration until the right structure for the intended application is achieved. Too much martensite leaves steel brittle, too little leaves it soft.

Contents

[edit] Martensitic Transformation: Mysterious Properties Explained

The difference between austenite and martensite is, in some ways, quite small: while the average unit cell of austenite is, on average, a perfect little cube, the transformation to martensite sees this cube distorted by interstitial carbon atoms that do not have time to diffuse out during displacive transformation, so that it is a tiny bit longer than before in one dimension and a little bit shorter in the other two. The mathematical description of the two structures is quite different, for reasons of symmetry (see external links), but the chemical bonding remains very similar. Unlike cementite, which has bonding reminiscent of ceramic materials, the hardness of martensite is difficult to explain in chemical terms.

The explanation hinges on the crystal's subtle change in dimension. Even a microscopic crystallite is millions of unit cells long. Since all of these units face the same direction, distortions of even a fraction of a percent become magnified into a major mismatch between neighboring materials. The mismatch is sorted out by the creation of myriad crystal defects, in a process reminiscent of work hardening. As in work-hardened steel, these defects prevent atoms from sliding past one another in an organized fashion, causing the material to become harder.

Shape memory alloy also has surprising mechanical properties, that were eventually explained by an analogy to martensite. Unlike the iron-carbon system, alloys in the nickel-titanium system can be chosen that make the "martensitic" phase thermodynamically stable.

[edit] See also

[edit] External links

[edit] References

  1. ^ a b Ashby, Michael F., & David R. H. Jones [1986] (1992). Engineering Materials 2, with corrections (in English), Oxford: Pergamon Press. ISBN 0-08-032532-7.