Talk:Local hidden variable theory

From Wikipedia, the free encyclopedia

WikiProject Physics This article is within the scope of WikiProject Physics, which collaborates on articles related to physics.
??? This article has not yet received a rating on the assessment scale. [FAQ]
??? This article has not yet received an importance rating within physics.

Please rate this article, and then leave comments here to explain the ratings and/or to identify the strengths and weaknesses of the article.

Changed the statement about local realism guiding all scientific endaveor before QM. Newtonian gravity is not a local realist theory. Roadrunner 07:15, 21 Aug 2004 (UTC)

Newtonian gravitation is not local, true, but even Newton felt there was something wrong with Newtonian gravitation because it of that. (As well as other critics with their criticism of action-at-a-distance) And Newtonian gravitation was replaced by General Relativity , which IS local (and realistic), before the quantum mechanics of the 1920s. So you could say that local realism was indeed a guiding principle (of all valid physics) before qm. Pedantically, 67.118.118.112 01:09, 19 Jan 2005 (UTC)

[edit] NPOV warning?

I don't see any reason for the NPOV warning in the article. I can't see any discussion going on about the NPOV here, either. It seems like some disargreement has been going on between DrChinese and Caroline Thompson, but no discussion is taking place at all and the proble seems to be solved. The warning should be removed.--CWitte 11:43, 14 Mar 2005 (UTC)

IMHO the article doesn't match its lemma and what's to be said about LHVTs should be said in Hidden variable theory. The actual of Local hidden variable theory is just another spinoff from Bell test experiments. --Pjacobi 13:51, 2005 Mar 14 (UTC)

[edit] Summary

The artical really needs a summary of what it actually means and if it is violated or confirmed by real results. Apart from that i dont see the reason for the non-NPOV warning

"which has always been considered a desirable property by physicists" - that statement is lacking a neutral point of view. While that was once considered a desirable feature by the majority of physicists, I don't believe that it is nearly unanimus today. The Orthodox interpretation of quantum mechanics (Something like Von Neumann - Dirac's interpretation) is certainly not local. In fact, quantum mechanics is generally nonlocal and repreated experimental violations of Bell's inequality are (so far) unexplainable by anything other than nonlocal hidden variable theory, or nonlocal no hidden variable theory. Maybe one could introduce a fairly exotic mechanism to get around it (like the hidden time) mentioned in the article, I don't know. But for the moment, locality is dead in the minds of most phycisists.

Ahem! For the absence of explanation of the possible local hidden variable theories, invoking nothing exotic, you have to thank Dr Chinese, who, earlier this year, was the prime mover in deleting all references to my own work and removing the page on the Bell Test Loopholes. It is the loopholes in the real experiments that make local HV theories possible as explanations for all the observed results. What no local HV theory can do, though, is reproduce exactly the QM prediction. The latter assumes perfect conditions and has never been tested. This is why efforts to devise a genuinely "loophole-free" test continue. See my user page for more, including the deleted page.

If you read the current local HV theory page carefully, you will find hints as to how these theories work as regards exploitation of the "detection loophole". This is the loophole that is related to possibility of altering the assumptions so as to get away from exact adherence to Malus' law. By assuming that detector responses not exactly proportional to intentities but, instead, are such that all very weak signals are ignored, we find Malus' law replaced by one that is similar in that is has peaks at the same places but has wider troughs. If the troughs are zero then when we integrate over polarisation directions (our HV) we can get predicted coincidence curves with visibility anything up to 1, in agreement with QM.

Incidentally, as regards a possible timing loophole, I don't think any of the ones mentioned are relevant. There is one that may well be, though. See a paper of mine: http://arxiv.org/abs/quant-ph . Caroline Thompson 09:15, 6 September 2005 (UTC)