List of formulae involving π

From Wikipedia, the free encyclopedia

The following is a list of formulae involving the mathematical constant π:

Contents

[edit] Classical geometry

C = 2\pi r,\,

where C is the circumference of a circle and r is the radius.

A = \pi r^2,\,

where A is the area of a circle and r is the radius.

V = {4 \over 3}\pi r^3,

where V is the volume of a sphere and r is the radius.

A = 4\pi r^2\,

where A is the surface area of a sphere and r is the radius.

[edit] Analysis

[edit] Integrals

\int_{-1}^1 \sqrt{1-x^2}\,dx = \frac{\pi}{2}


\int_{-1}^1\frac{dx}{\sqrt{1-x^2}} = \pi


\int_{-\infty}^{\infty} e^{-x^2}\,dx = \sqrt{\pi} (see also normal distribution).


\oint\frac{dz}{z}=2\pi i (when the path of integration winds once counterclockwise around 0. See also Cauchy's integral formula)


\int_0^\infty\frac{\sin(x)}{x}\,dx=\frac{\pi}{2}.


\int_0^1 {x^4(1-x)^4 \over 1+x^2}\,dx = {22 \over 7} - \pi (see also proof that 22 over 7 exceeds π).

[edit] Efficient infinite series

\sum_{k=0}^\infty\frac{k!}{(2k+1)!!}=\frac{\pi}{2} (see also double factorial)
12 \sum^\infty_{k=0} \frac{(-1)^k (6k)! (13591409 + 545140134k)}{(3k)!(k!)^3 640320^{3k + 3/2}}=\frac{1}{\pi}
\frac{2\sqrt{2}}{9801} \sum^\infty_{k=0} \frac{(4k)!(1103+26390k)}{(k!)^4 396^{4k}}=\frac{1}{\pi}

The following are good for calculating arbitrary binary digits of π:

\sum_{k = 0}^{\infty} \frac{1}{16^k} \left( \frac{4}{8k + 1} - \frac{2}{8k + 4} - \frac{1}{8k + 5} - \frac{1}{8k + 6}\right)=\pi
\frac{1}{2^6} \sum_{n=0}^{\infty} \frac{{(-1)}^n}{2^{10n}} \left( - \frac{2^5}{4n+1} - \frac{1}{4n+3} + \frac{2^8}{10n+1} - \frac{2^6}{10n+3} - \frac{2^2}{10n+5} - \frac{2^2}{10n+7} + \frac{1}{10n+9} \right)=\pi

[edit] Other infinite series

\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2n+1} = \frac{1}{1} - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \cdots = \arctan{1} = \frac{\pi}{4}
\zeta(2) = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \cdots = \frac{\pi^2}{6} (see also Basel problem and zeta function)
\zeta(4)= \frac{1}{1^4} + \frac{1}{2^4} + \frac{1}{3^4} + \frac{1}{4^4} + \cdots = \frac{\pi^4}{90}
\zeta(2n)= \frac{1}{1^{2n}} + \frac{1}{2^{2n}} + \frac{1}{3^{2n}} + \frac{1}{4^{2n}} + \cdots = (-1)^{n+1}\frac{B_{2n}(2\pi)^{2n}}{2(2n)!}
\sum_{n=0}^{\infty} \frac{1}{(2n+1)^2} = \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \cdots = \frac{\pi^2}{8}
\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)^3} = \frac{1}{1^3} - \frac{1}{3^3} + \frac{1}{5^3} - \frac{1}{7^3} + \cdots = \frac{\pi^3}{32}

[edit] Machin-like formulae

See also Machin-like formula.

\frac{\pi}{4} = 4 \arctan\frac{1}{5} - \arctan\frac{1}{239} (the original Machin's formula)
\frac{\pi}{4} = \arctan\frac{1}{2} + \arctan\frac{1}{3}
\frac{\pi}{4} = 2 \arctan\frac{1}{2} - \arctan\frac{1}{7}
\frac{\pi}{4} = 2 \arctan\frac{1}{3} + \arctan\frac{1}{7}
\frac{\pi}{4} = 5 \arctan\frac{1}{7} + 2 \arctan\frac{3}{79}
\frac{\pi}{4} = 12 \arctan\frac{1}{49} + 32 \arctan\frac{1}{57} - 5 \arctan\frac{1}{239} + 12 \arctan\frac{1}{110443}
\frac{\pi}{4} = 44 \arctan\frac{1}{57} + 7 \arctan\frac{1}{239} - 12 \arctan\frac{1}{682} + 24 \arctan\frac{1}{12943}

[edit] Infinite products

\prod_{n=1}^{\infty} \frac{4n^2}{4n^2-1} = \frac{2}{1} \cdot \frac{2}{3} \cdot \frac{4}{3} \cdot \frac{4}{5} \cdot \frac{6}{5} \cdot \frac{6}{7} \cdot \frac{8}{7} \cdot \frac{8}{9} \cdots = \frac{\pi}{2} (see also Wallis product)
\frac{\sqrt2}2 \cdot \frac{\sqrt{2+\sqrt2}}2 \cdot \frac{\sqrt{2+\sqrt{2+\sqrt2}}}2 \cdot \cdots = \frac2\pi

[edit] A continued fraction

\pi=3 + \cfrac{1}{6 + \cfrac{9}{6 + \cfrac{25}{6 + \cfrac{49}{6 + \cfrac{81}{6 + \cfrac{121}{\ddots\,}}}}}}

(See also continued fraction.)

[edit] Miscellaneous

n! \sim \sqrt{2 \pi n} \left(\frac{n}{e}\right)^n (Stirling's approximation)
e^{i \pi} + 1 = 0\; (Euler's formula)
\sum_{k=1}^{n} \varphi (k) \sim \frac{3n^2}{\pi^2}
\Gamma\left({1 \over 2}\right)=\sqrt{\pi} (see also gamma function)
\pi = \frac{\Gamma\left({1/4}\right)^{4/3} \mathrm{agm}(1, \sqrt{2})^{2/3}}{2} (where agm is the arithmetic-geometric mean)

[edit] Physics

\Lambda = {{8\pi G} \over {3c^2}} \rho
\Delta x \Delta p \ge \frac{h}{4\pi}
R_{ik} - {g_{ik} R \over 2} + \Lambda g_{ik} = {8 \pi G \over c^4} T_{ik}
F = \frac{\left|q_1q_2\right|}{4 \pi \epsilon_0 r^2}
\mu_0 = 4 \pi \cdot 10^{-7}\,\mathrm{N/A^2}\,

[edit] References