Liquid nitrogen economy
From Wikipedia, the free encyclopedia
A liquid nitrogen (LN2) economy is a hypothetical proposal for a future economy in which the primary form of energy storage and transport is liquid nitrogen. It is proposed as an alternative to liquid hydrogen in some transport modes and as a means of locally storing energy captured from renewable sources. An analysis of this concept provides insight into the physical limits of all energy conversion schemes.
Contents |
[edit] Description
Currently, most road vehicles are powered by internal combustion engines burning fossil fuel. If transportation is to be sustainable over the long term, the fuel must be replaced by something else produced by renewable energy. The replacement should not be thought of as an energy source; it is a means of transferring and concentrating energy, a "currency".
Liquid nitrogen is generated by cryogenic or Stirling engine coolers that liquefy the main component of air, nitrogen (N2). The cooler can be powered by renewable generated electricity or through direct mechanical work from a hydro or wind turbines.
Liquid nitrogen is distributed and stored in insulated containers. The insulation reduces heat flow into the stored nitrogen. Heat from the surrounding environment boils the liquid. Reducing inflowing heat reduces the loss of liquid nitrogen in storage. The requirements of storage prevent the use of pipelines as a means of transport. Since long-distance pipelines would be costly due to the insulation requirements, it would be costly to use distant energy sources for production of liquid nitrogen. Petroleum reserves are typically a vast distance from consumption but can be transferred at ambient temperatures.
Liquid nitrogen consumption is in essence production in reverse. The Stirling engine or cryogenic heat engine offers a way to power vehicles and a means to generate electricity. Liquid nitrogen can also serve as a direct coolant for refrigerators, electrical equipment and air conditioning units. The consumption of liquid nitrogen is in effect boiling and returning the nitrogen to the atmosphere.
[edit] Political argument
The adaptability of thermal-engines and a diverse means of production is likely to lead to the diversification, localization and stability of the energy market. Possible energy diversification includes the hydrogen economy, solar and biofuel alternatives.
The dependence on the petroleum economy has a significant global influence. Petroleum reserves represent political and monetary power. Considerable effort is focused on managing a stable supply, shaping global politics. The environmental impact from the carbon dioxide discharge is currently unsustainable. Alternatives are a matter of necessity.
[edit] Criticisms
The approach has been criticized on the following grounds, which can also be seen as the engineering challenges that must be overcome.
[edit] Cost of production
Liquid nitrogen production is an energy-intensive process. Currently practical refrigeration plants producing a few tons/day of liquid nitrogen operate at about 50% of Carnot efficiency [1].
[edit] Energy density of liquid nitrogen
Any process that relies on a phase-change of a substance will have much lower energy densities than processes involving a chemical reaction in a substance, which in turn have lower energy densities than nuclear reactions. Liquid nitrogen as an energy store has a low energy density. Liquid hydrocarbon fuels by comparison have a high energy density. A high energy density makes the logistics of transport and storage more convenient. Convenience is an important factor in consumer acceptance. The convenient storage of petroleum fuels combined with its low cost has lead to an unrivalled success. In addition, a petroleum fuel is a primary energy source, not just an energy storage and transport medium.
The maximum energy density that can be realised from liquid nitrogen at atmospheric pressure is 213 watt-hours per kilogram (W-hr/kg). This compares with about 3,000 W-hr/kg for a gasoline combustion engine running at 28% thermal efficiency, 14 times the density of liquid nitrogen used at the Carnot efficiency [2].
For an isothermal expansion engine to have a range comparable to an internal combustion engine, a 350 litre(93 gallon) onboard storage vessel is required [2]. Add to that the fact the container would need to be insulated. A practical volume, but a noticeable increase over the typical 50 litre(13 gallon) gasoline tank. The addition of more complex power cycles would reduce this requirement and help enable frost free operation. However, no commercially practical instances of liquid nitrogen use for vehicle propulsion exist.
[edit] Frost formation
Unlike internal combustion engines, using a cryogenic fuel require heat exchangers to warm and cool the working fluid. In a humid environment, frost formation will prevent heat flow and thus represents an engineering challenge. To prevent frost build up, multiple working fluids can be used. This adds topping cycles to ensure the heat exchanger does not fall below freezing. Additional heat exchangers, weight, complexity, efficiency loss, and expense, would be required to enable frost free operation [2].
[edit] See also
- Energy storage
- Energy crisis
- Future energy development
- Hydrogen economy
- Methanol economy
- Lithium economy
- Zinc economy
- Solar power
[edit] External links
- Liquid Nitrogen Economy - Similar overview with diagrams. (License GFDL)
- LN2 Vehicle 1 - A liquid nitrogen powered car using a Cryogenic Heat Engine at the University of North Texas.
- LN2 Vehicle 2- Another liquid nitrogen powered car at the University of Washington.
- WhisperGen - Domestic Stirling generators.
- Cryogenic Coolers - Small, rapid, compact cooling.
- Discussion on LN2 vehicle feasibility at How stuff works
- Thermodynamic Properties of various fuels - Tabulated data.
[edit] References
- ^ J. Franz, C. A. Ordonez, A. Carlos, Cryogenic Heat Engines Made Using Electrocaloric Capacitors, American Physical Society, Texas Section Fall Meeting, October 4-6, 2001 Fort Worth, Texas Meeting ID: TSF01, abstract #EC.009, 10/2001.
- ^ a b c C. Knowlen, A.T. Mattick, A.P. Bruckner and A. Hertzberg, "High Efficiency Conversion Systems for Liquid Nitrogen Automobiles", Society of Automotive Engineers Inc, 1988.
- C. A. Ordonez, M. C. Plummer, R. F. Reidy "Cryogenic Heat Engines for Powering Zero Emission Vehicles", Proceedings of 2001 ASME International Mechanical Engineering Congress and Exposition, November 11-16, 2001, New York, NY.
- Kleppe J.A., Schneider R.N., “A Nitrogen Economy”, Winter Meeting ASEE, Honolulu, HI, December, 1974.
- Gordon J. Van Wylan and Richard F. Sontag, Fundamentals of Classical Thermodynamics SI Version 2nd Ed.
Energy Development and Use Edit | |
---|---|
Energy development | Environmental concerns with electricity generation | Future energy development | Inertial fusion power plant | Hydrogen storage | Hydrogen station | Hydrogen economy | Hubbert peak theory | Renewable energy | Hypermodernity | Technological singularity | Air engine | Liquid nitrogen economy | Flywheel energy storage |
|
Categories: Nitrogen | Peak oil | Fuels | Economies | Energy storage