KSTAR

From Wikipedia, the free encyclopedia

The KSTAR, or Korean Superconducting Tokamak Advanced Reactor is a magnetic fusion device being built at the Korea Basic Science Institute in Daejon, South Korea. It is intended to study aspects of magnetic fusion energy which will be pertinent to the ITER fusion project as part of that country's contribution to the international ITER effort. The project was approved in 1995 but construction was delayed by the East Asian financial crisis which weakened the South Korean economy considerably; however the project is now back on track and construction is expected to be completed in August 2007. Commissioning will begin once construction is completed, and first plasma is expected in early 2008.

KSTAR will be one of the first research tokamaks in the world to feature fully superconducting magnets, which again will be of great relevance to ITER as this will also use SC magnets. The KSTAR magnet system consists of 16 niobium-tin direct current toroidal field magnets, 10 niobium-tin alternating current poloidal field magnets and 4 niobium-titanium alternating current poloidal field magnets. It is planned that the reactor will study plasma pulses of up to 20 seconds duration until 2011, when it will be upgraded to study pulses of up to 300 seconds duration. The reactor vessel will have a major radius of 1.8 m, a minor radius of 0.5 m, a maximum toroidal field strength of 3.5 teslas, and a maximum plasma current of 2 megaamperes. As with other tokamaks, heating and current drive will be initiated using neutral beam injection, ion cyclotron resonance heating (ICRH), RF heating and electron cyclotron resonance heating (ECRH). Initial heating power will be 8 megawatts from neutral beam injection upgradeable to 24 MW, 6 MW from ICRH upgradeable to 12 MW, and at present undetermined heating power from ECRH and RF heating. The experiment will use both hydrogen and deuterium fuels but not the deuterium-tritium mix which will be studied in ITER.

[edit] External links


Fusion power
v  d  e
Atomic nucleus | Nuclear fusion | Nuclear power | Nuclear reactor | Timeline of nuclear fusion
Plasma physics | Magnetohydrodynamics | Neutron flux | Fusion energy gain factor | Lawson criterion
Methods of fusing nuclei

Magnetic confinement: Tokamak - Spheromak - Stellarator - Reversed field pinch - Field-Reversed Configuration - Levitated Dipole
Inertial confinement: Laser driven - Z-pinch - Bubble fusion (acoustic confinement) - Fusor (electrostatic confinement)
Other forms of fusion: Muon-catalyzed fusion - Pyroelectric fusion - Migma - Cold fusion(disputed)

List of fusion experiments

Magnetic confinement devices
ITER (International) | JET (European) | JT-60 (Japan) | Large Helical Device (Japan) | KSTAR (Korea) | EAST (China) | T-15 (Russia) | DIII-D (USA) | Tore Supra (France) | ASDEX Upgrade (Germany) | TFTR (USA) | NSTX (USA) | NCSX (USA) | Alcator C-Mod (USA) | LDX (USA) | H-1NF (Australia) | MAST (UK) | START (UK) | Wendelstein 7-X (Germany) | TCV (Switzerland) | DEMO (Commercial)


Inertial confinement devices
Laser driven: NIF (USA) | OMEGA laser (USA) | Nova laser (USA) | Novette laser (USA) | Nike laser (USA) | Shiva laser (USA) | Argus laser (USA) | Cyclops laser (USA) | Janus laser (USA) | Long path laser (USA) | 4 pi laser (USA) | LMJ (France) | GEKKO XII (Japan) | ISKRA lasers (Russia) | Vulcan laser (UK) | Asterix IV laser (Czech Republic) | HiPER laser (European)
Non-laser driven:
Z machine (USA) | PACER (USA)


See also: International Fusion Materials Irradiation Facility