Talk:Knights and knaves
From Wikipedia, the free encyclopedia
I'm not certain that Smullyan first did these, but he certainly does many of them. To my mind, the ancestor of these puzzles is the old story about the two guards on two doors, one with treasuer, one with a tiger, and one guard lies, one tells the truth, and you only have one question to ask. Does this old one have a specific name? Where does it originate? (it has a 1001 nights feel?) -- Tarquin 21:48 19 Jul 2003 (UTC)
Regarding Question 2 - Without using any formal boolean algebra, a different solution came to me immediately - it appears to me that it could also be that both Bill and John are knaves (in this case, both Bill and John's statements are false, which is consistent with them both being knaves). Any problem with that solution? It seems a much simpler reasoning than the solution presented in section 1.5... Zoopee 09:09, 26 August 2006 (UTC)
- I believe that's correct, they're both knaves, since they can't both be knights because of Bill's statement, they can't be a knave and a knight because then John's statement wouldn't be false, and they can't be a knight and a knave because then Bill's statement would be true. Which leaves us with two knaves. The solution to the puzzle isn't given in the article though, I think it was just meant as an example.--BigCow 21:18, 21 November 2006 (UTC)