Image:KleinBottle-01.png

From Wikipedia, the free encyclopedia

KleinBottle-01.png (65KB, MIME type: image/png)

Wikimedia Commons logo This is a file from the Wikimedia Commons. The description on its description page there is shown below.

Contents

[edit] Summary

Standard immersion of a Klein bottle into R3. Made with Mathematica.

[edit] See also

Image:Klein bottle.svg

[edit] Licensing

Public domain I, the author of this work, hereby release it into the public domain. This applies worldwide.

In case this is not legally possible:
I grant anyone the right to use this work for any purpose, without any conditions, unless such conditions are required by law.


Afrikaans | Alemannisch | Aragonés | العربية | Български | Català | Česky | Cymraeg | Dansk | Deutsch | Ελληνικά | English | Español | Esperanto | فارسی | Français | Galego | 한국어 | हिन्दी | Hrvatski | Ido | Bahasa Indonesia | Íslenska | Italiano | עברית | Latina | Lietuvių | Magyar | Bahasa Melayu | Nederlands | Norsk (bokmål) | Norsk (nynorsk) | 日本語 | Polski | Português | Ripoarish | Română | Русский | Slovenčina | Slovenščina | Српски | Svenska | ไทย | Türkçe | Українська | Tiếng Việt | Walon | 简体中文 | 繁體中文 | 粵語 | +/-


[edit] Parameterization

This immersion of the Klein bottle into R3 is given by the following parameterization. Here the parameters u and v run from 0 to 2π and r is a fixed positive constant.

For 0 \leq u < \pi:

x = 6 \cos u(1 + \sin u) + 4r\left(1 - \frac{\cos u}{2}\right) \cos u \cos v
y = 16 \sin u + 4r\left(1 - \frac{\cos u}{2}\right) \sin u \cos v
z = 4r\left(1 - \frac{\cos u}{2}\right) \sin v

For \pi \leq u < 2\pi:

x = 6 \cos u(1 + \sin u) - 4r\left(1 - \frac{\cos u}{2}\right) \cos v
y = 16 \sin u\,
z = 4r\left(1 - \frac{\cos u}{2}\right) \sin v

[edit] Mathematica source

KleinBottle[r_:1] =
 Function[{u, v},
   UnitStep[Sin[u]]
   {
       6 Cos[u](1 + Sin[u]) + 4r(1 - Cos[u]/2) Cos[u]Cos[v],
       16 Sin[u] + 4r(1 - Cos[u]/2) Sin[u]Cos[v],
       4r(1 - Cos[u]/2) Sin[v]
   }
   + (1 - UnitStep[Sin[u]])
   {
       6 Cos[u](1 + Sin[u]) - 4r(1 - Cos[u]/2) Cos[v],
       16 Sin[u],
       4r(1 - Cos[u]/2) Sin[v]
   }
 ]

 ParametricPlot3D[Evaluate[KleinBottle[][u, v]], {u, 0, 2Pi}, {v, 0, 2Pi},
   PlotPoints -> {50, 19}, Boxed -> False, Axes -> False,
   ViewPoint -> {0.454, -2.439, -2.301}]

The following pages on the English Wikipedia link to this file (pages on other projects are not listed):