User:Karlhahn/oldSand

From Wikipedia, the free encyclopedia

Material that has been retired from my main sandbox

Contents

[edit] Liquid/Vapor Equilibrium Data

Vapor over Anhydrous Ammonia
Temp. Pressure ρ of liquid ρ of vapor ΔvapH
–78 °C 5.90 kPa
–75 °C 7.93 kPa 0.73094 g/cm3 7.8241×10–5 g/cm3
–70 °C 10.92 kPa 0.72527 g/cm3 1.1141×10–4 g/cm3
–65 °C 15.61 kPa 0.71953 g/cm3 1.5552×10–4 g/cm3
–60 °C 21.90 kPa 0.71378 g/cm3 2.1321×10–4 g/cm3
–55 °C 30.16 kPa 0.70791 g/cm3 2.8596×10–4 g/cm3
–50 °C 40.87 kPa 0.70200 g/cm3 3.8158×10–4 g/cm3 1417 J/g
–45 °C 54.54 kPa 0.69604 g/cm3 4.9940×10–4 g/cm3 1404 J/g
–40 °C 71.77 kPa 0.68999 g/cm3 6.4508×10–4 g/cm3 1390 J/g
–35 °C 93.19 kPa 0.68385 g/cm3 8.2318×10–4 g/cm3 1375 J/g
–30 °C 119.6 kPa 0.67764 g/cm3 1.0386×10–3 g/cm3 1361 J/g
–25 °C 151.6 kPa 0.67137 g/cm3 1.2969×10–3 g/cm3 1345 J/g
–20 °C 190.2 kPa 0.66503 g/cm3 1.6039×10–3 g/cm3 1330 J/g
–15 °C 236.3 kPa 0.65854 g/cm3 1.9659×10–3 g/cm3 1314 J/g
–10 °C 290.8 kPa 0.65198 g/cm3 2.3874×10–3 g/cm3 1297 J/g
–5 °C 354.8 kPa 0.64533 g/cm3 2.8827×10–3 g/cm3 1280 J/g
 0 °C 429.4 kPa 0.63857 g/cm3 3.4528×10–3 g/cm3 1263 J/g
 5 °C 515.7 kPa 0.63167 g/cm3 4.1086×10–3 g/cm3 1245 J/g
 10 °C 614.9 kPa 0.62469 g/cm3 4.8593×10–3 g/cm3 1226 J/g
 15 °C 728.3 kPa 0.61755 g/cm3 5.7153×10–3 g/cm3 1207 J/g
 20 °C 857.1 kPa 0.61028 g/cm3 6.6876×10–3 g/cm3 1187 J/g
 25 °C 1003 kPa 0.60285 g/cm3 7.7882×10–3 g/cm3 1167 J/g
 30 °C 1166 kPa 0.59524 g/cm3 9.0310×10–3 g/cm3 1146 J/g
 35 °C 1350 kPa 0.58816 g/cm3 1.0431×10–2 g/cm3 1124 J/g
 40 °C 1554 kPa 0.57948 g/cm3 1.2006×10–2 g/cm3 1101 J/g
 45 °C 1781 kPa 0.57130 g/cm3 1.3775×10–2 g/cm3 1083 J/g
 50 °C 2032 kPa 0.56287 g/cm3 1.5761×10–2 g/cm3 1052 J/g
 55 °C 2310 kPa 0.55420 g/cm3
 60 °C 2613 kPa 0.54523 g/cm3 2.05×10–2 g/cm3
 65 °C 2947 kPa 0.53596 g/cm3
 70 °C 3312 kPa 0.52632 g/cm3 2.65×10–2 g/cm3
 75 °C 3711 kPa 0.51626 g/cm3
 80 °C 4144 kPa 0.50571 g/cm3 3.41×10–2 g/cm3
 85 °C 4614 kPa 0.49463 g/cm3
 90 °C 5123 kPa 0.48290 g/cm3 4.39×10–2 g/cm3
 95 °C 5672 kPa 0.47041 g/cm3
100 °C 6264 kPa 0.45693 g/cm3 5.68×10–2 g/cm3


The table above gives properties of the vapor/liquid equilibrium of anhydrous ammonia at various temperatures. The second column is vapor pressure in kPa. The third column is the density of the liquid phase. The fourth column is the density of the vapor. The fifth column is the heat of vaporization needed to convert one gram of liquid to vapor.

[edit] Equilibrium of vapor over aqueous solution

Vapor over Aqueous Ammonia Solution[1]
Temp. %wt NH3 Partial Pressure
NH3
Partial Pressure
H2O
0 °C 4.72 1.52 kPa 0.68 kPa
9.15 3.31 kPa 0.71 kPa
14.73 6.84 kPa 0.55 kPa
19.62 11.0 kPa 0.40 kPa
22.90 14.9 kPa 0.37 kPa
10 °C 4.16 2.20 kPa 1.21 kPa
8.26 4.96 kPa 1.17 kPa
12.32 8.56 kPa 1.01 kPa
15.88 12.68 kPa 0.93 kPa
20.54 19.89 kPa 0.83 kPa
21.83 22.64 kPa 0.73 kPa
19.9 °C 4.18 3.65 kPa 2.19 kPa
6.50 6.11 kPa 2.15 kPa
6.55 6.13 kPa 2.13 kPa
7.72 7.49 kPa 2.08 kPa
10.15 10.75 kPa 2.01 kPa
10.75 11.51 kPa 1.96 kPa
16.64 22.14 kPa 1.72 kPa
19.40 28.74 kPa 1.64 kPa
23.37 40.32 kPa 1.37 kPa
30.09 °C 3.93 5.49 kPa 4.15 kPa
7.43 11.51 kPa 3.89 kPa
9.75 16.00 kPa 3.80 kPa
12.77 23.33 kPa 3.55 kPa
17.76 38.69 kPa 3.31 kPa
17.84 38.81 kPa 3.24 kPa
21.47 53.94 kPa 2.95 kPa
40 °C 3.79 8.15 kPa 7.13 kPa
7.36 17.73 kPa 6.76 kPa
11.06 29.13 kPa 6.55 kPa
15.55 47.14 kPa 5.52 kPa
17.33 57.02 kPa
20.85 76.81 kPa 5.04 kPa
50 °C 3.29 10.54 kPa 11.95 kPa
5.90 20.17 kPa 11.61 kPa
8.91 32.88 kPa 11.07 kPa
11.57 45.56 kPa 10.75 kPa
14.15 60.18 kPa 10.27 kPa
14.94 64.94 kPa 10.03 kPa
60 °C 3.86 18.25 kPa 19.21 kPa
5.77 28.78 kPa
7.78 40.05 kPa 18.47 kPa
9.37 50.09 kPa 18.07 kPa
9.37 63.43 kPa 17.39 kPa



[edit] Hebrew Calendar

[edit] Summary of Calendar Calculations

The audience for this section is computer programmers who wish to write software that accurately computes dates in the Hebrew calendar. The following details are sufficient to generate such software.

1) The Hebrew calendar is computed by lunations. One lunation is reckoned at 29 days, 12 hours, 44 minutes, 3⅓ seconds, or equivalently 765433 halakim = 29 days, 13753 halakim.
2) A common year must be either 353, 354, or 355 days; a leap year must be 383, 384, or 385 days. A 353 or 383 day year is called kesidrah. A 354 or 384 day year is shelemah. A 355 or 385 day year is haserah.
3) Leap years follow a 19 year schedule in which years 3, 6, 8, 11, 14, 17, and 19 are leap years. The Jewish year 5752 (which starts in Gregorian year 1991) is the first year of a cycle.
4) 19 years is the same as 235 lunations.
5) The months are Tishri, Heshvan, Kislev, Tebeth, Shebhat, Adar, Nisan, Iyyar, Sivan, Tammuz, Av, and Elul. In addition, a second Adar (also called Veadar, Adar II, or Adar Sheni) is added in leap years. When added, it follows Adar.
6) Each month has either 29 or 30 days. A 30 day month is male, a 29 day month is haser.
Nisan, Sivan, Av, Tishri, and Shebhat are always male.
Iyyar, Tammuz, Elul, Tebeth, and Adar II are always haser.
Adar is male in leap years, haser in common years.
Heshvan and Kislev vary, but when they differ, Heshvan is haser and Kislev is male.
7) Tishri 1st (Rosh Hashana) is the day of a molad (new moon) unless certain conditions (dahiyyah sing; dahiyyot pl) exist.
a) This dahiyyah exists whenever Tishri 10 (Yom Kippur) would fall on a Friday or a Sunday, or if Tishri 21 (7th day of Sukkot) would fall on a Saturday. This is equivalent to the molad being on Sunday, Wednesday, or Friday. Whenever this happens, Tishri 1 is delayed by 1 day.
b) This dahiyyah exists whenever the molad occurs on or after noon. When this dahiyyah exists, Tishri 1 is delayed by 1 day. If this causes dahiyyah A to exist, Tishri 1 is delayed an additional day.
c) If the year is to be a common year and the molad falls on a Tuesday on or after 3:11:20 am (3 hours 204 halakim) Jerusalem time, Tishri 1 is delayed by 2 days. This is because if it weren't delayed, the resulting year would be 356 days long.
d) If the new year follows a leap year and the molad is on a Monday on or after 9:32:43 and one third seconds (9 hours 589 halakim), Tishri 1 is delayed 1 day. This is because if it weren't, the preceding year would have only 382 days.
8) Delays are implemented by adding a day to Kislev of the preceding year, making it male. If Kislev is already male, the day is added to Heshvan of the preceding year, making it male also. If a delay of 2 days is called for, both Heshvan and Kislev of the preceding year become male.
9) The molad of 08-Sep-1991, which is Rosh Hashana of Hebrew yer, 5752, is Julian day, 2448509 plus 3294 halakim.

[edit] Future Project: Tide Prediction

Plan to explain the method of harmonic constituents as detailed in U.S. Govt. Special Publication 92.

[edit] Reorganize Heat Capacity Ratio Table

Heat Capacity Ratio for various gases[2][3]
Temp. Gas γ   Temp. Gas γ   Temp. Gas γ
–181°C H2 1.597 –76°C H2 1.453 20°C H2 1.41
100°C H2 1.404 400°C H2 1.387 1000°C H2 1.358
2000°C H2 1.318 20°C He 1.66 20°C H2O 1.33
100°C H2O 1.324 200°C H2O 1.310 –180°C Ar 1.76
20°C Ar 1.67 0°C Dry Air 1.403 20°C Dry Air 1.40
100°C Dry Air 1.401 200°C Dry Air 1.398 400°C Dry Air 1.393
1000°C Dry Air 1.365 1400°C Dry Air 1.341 2000°C Dry Air 1.088
0°C CO2 1.310 20°C CO2 1.30 100°C CO2 1.281
400°C CO2 1.235 1000°C CO2 1.195 20°C CO 1.40
–181°C O2 1.45 –76°C O2 1.415 20°C O2 1.40
100°C O2 1.399 200°C O2 1.397 400°C O2 1.394
20°C NO 1.40 20°C N2O 1.31 –181°C N2 1.47
15°C N2 1.404 20°C Cl2 1.34 –115°C CH4 1.41
–74°C CH4 1.35 20°C CH4 1.32 19°C Ne 1.64
19°C Kr 1.68 19°C Xe 1.66 15°C SO2 1.29
360°C Hg 1.67
Heat Capacity Ratio for various gases[4][5]
Temp. Gas γ   Temp. Gas γ   Temp. Gas γ
–181°C H2 1.597 200°C Dry Air 1.398 20°C NO 1.40
–76°C 1.453 400°C 1.393 20°C N2O 1.31
20°C 1.41 1000°C 1.365 –181°C N2 1.47
100°C 1.404 2000°C 1.088 15°C 1.404
400°C 1.387 0°C CO2 1.310 20°C Cl2 1.34
1000°C 1.358 20°C 1.30 –115°C CH4 1.41
2000°C 1.318 100°C 1.281 –74°C 1.35
20°C He 1.66 400°C 1.235 20°C 1.32
20°C H2O 1.33 1000°C 1.195 15°C NH3 1.310
100°C 1.324 20°C CO 1.40 19°C Ne 1.64
200°C 1.310 –181°C O2 1.45 19°C Xe 1.66
–180°C Ar 1.76 –76°C 1.415 19°C Kr 1.68
20°C 1.67 20°C 1.40 15°C SO2 1.29
0°C Dry Air 1.403 100°C 1.399 360°C Hg 1.67
20°C 1.40 200°C 1.397 15°C C2H6 1.22
100°C 1.401 400°C 1.394 16°C C3H8 1.13




[edit] Translating Water (data page) equivalent from German

[edit] Current version of translation

[edit] Physical and Thermodynamic Tables

In the following tables, values are temperature dependent and to a lesser degree pressure dependent, and are arranged by state of aggregation (s=solid, lq=liquid, g=gas), which are clearly a function of temperature and pressure. All of the data were computed from data given in "Formulation of the Thermodynamic Properties of Ordinary Water Substance for Scientific and General Use" (1984). This applies to:

[edit] Standard conditions

In the following table, material data is given for standard pressure of 0.1 MPa (equivalent to 1 bar). Up to 99.63 °C (the boiling point of water), at this pressure water exists as a liquid. Above that, it exists as water vapor.

 
Water/Steam Data Table at Standard Pressure (0.1 MPa)
T °C V
dm³/kg
H
kJ/kg
U
kJ/kg
S
kJ/(kg·K)
cp
kJ/(kg·K)
γ
10–3/K
λ
mW / (m·K)
η
μPa·s
σ1
mN/m
0 lq 1.0002 0.06 -0.04 -0.0001 4.228 -0.080 561.0 1792 75.65
5 1.0000 21.1 21.0 0.076 4.200 0.011 570.6 1518 74.95
10 1.0003 42.1 42.0 0.151 4.188 0.087 580.0 1306 74.22
15 1.0009 63.0 62.9 0.224 4.184 0.152 589.4 1137 73.49
20 1.0018 83.9 83.8 0.296 4.183 0.209 598.4 1001 72.74
25 1.0029 104.8 104.7 0.367 4.183 0.259 607.2 890.4 71.98
30 1.0044 125.8 125.7 0.437 4.183 0.305 615.5 797.7 71.20
35 1.0060 146.7 146.6 0.505 4.183 0.347 623.3 719.6 70.41
40 1.0079 167.6 167.5 0.572 4.182 0.386 630.6 653.3 69.60
45 1.0099 188.5 188.4 0.638 4.182 0.423 637.3 596.3 68.78
50 1.0121 209.4 209.3 0.704 4.181 0.457 643.6 547.1 67.95
60 1.0171 251.2 251.1 0.831 4.183 0.522 654.4 466.6 66.24
70 1.0227 293.1 293.0 0.955 4.187 0.583 663.1 404.1 64.49
80 1.0290 335.0 334.9 1.075 4.194 0.640 670.0 354.5 62.68
90 1.0359 377.0 376.9 1.193 4.204 0.696 675.3 314.6 60.82
99.63 lq 1.0431 417.5 417.4 1.303 4.217 0.748 679.0 283.0 58.99
g 1694.3 2675 2505 7.359 2.043 2.885 25.05 12.26
100 g 1696.1 2675 2506 7.361 2.042 2.881 25.08 12.27 58.92
200 2172.3 2874 2657 7.833 1.975 2.100 33.28 16.18 37.68
300 2638.8 3073 2810 8.215 2.013 1.761 43.42 20.29 14.37
500 3565.5 3488 3131 8.834 2.135 1.297 66.970 28.57
750 4721.0 4043 3571 9.455 2.308 0.978 100.30 38.48
1000 5875.5 4642 4054 9.978 2.478 0.786 136.3 47.66
1 The values for surface tension for the liquid section of the table are for a liquid/air interface. Values for the gas section of the table are for a liquid/saturated steam interface.


[edit] Triple Point

In the following table, material data is given with a pressure of 0.0006117 MPa (equivalent to 0.006117 bar). Up to a temperature of 0.01 °C, the triple point of water, water normally exists as ice, except for supercooled water, for which one data point is tabulated here. At the triple point ice can exist together with both liquid water and vapor. At higher temperatures the data is for water vapor only.

 
Water/Steam Data Table at Triple Point Pressure (0.0006117 MPa)
T °C V
dm³/kg
H
kJ/kg
U
kJ/kg
S
kJ/(kg·K)
cp
kJ/(kg·K)
γ
10–3/K
λ
mW / (m·K)
η
μPa·s
0 lq 1.0002 –0.04 –0.04 –0.0002 4.339 –0.081 561.0 1792
0.1 s 1.0908 –333.4 –333.4 –1.221 1.93 0.1 2.2
lq 1.0002 0.0 0 0 4.229 –0.080 561.0 1791
g 205986 2500 2374 9.154 1.868 3.672 17.07 9.22
5 g 209913 2509 2381 9.188 1.867 3.605 17.33 9.34
10 213695 2519 2388 9.222 1.867 3.540 17.60 9.46
15 217477 2528 2395 9.254 1.868 3.478 17.88 9.59
20 221258 2537 2402 9.286 1.868 3.417 18.17 9.73
25 225039 2547 2409 9.318 1.869 3.359 18.47 9.87
30 228819 2556 2416 9.349 1.869 3.304 18.78 10.02
35 232598 2565 2423 9.380 1.870 3.249 19.10 10.17
40 236377 2575 2430 9.410 1.871 3.197 19.43 10.32
45 240155 2584 2437 9.439 1.872 3.147 19.77 10.47
50 243933 2593 2444 9.469 1.874 3.098 20.11 10.63
60 251489 2612 2459 9.526 1.876 3.004 20.82 10.96
70 259043 2631 2473 9.581 1.880 2.916 21.56 11.29
80 266597 2650 2487 9.635 1.883 2.833 22.31 11.64
90 274150 2669 2501 9.688 1.887 2.755 23.10 11.99
100 281703 2688 2515 9.739 1.891 2.681 23.90 12.53
200 357216 2879 2661 10.194 1.940 2.114 32.89 16.21
300 432721 3076 2811 10.571 2.000 1.745 43.26 20.30
500 583725 3489 3132 11.188 2.131 1.293 66.90 28.57
750 772477 4043 3571 11.808 2.307 0.977 100.20 38.47
1000 961227 4642 4054 12.331 2.478 0.785 136.30 47.66


[edit] Saturated Vapor Pressure

The following table is based on different, complementary sources and approximation formulas, whose values are of various quality and accuracy. The values in the temperature range of –100 °C to 100 °C were inferred from D. Sunday (1982) and are quite uniform and exact. The values in the temperature range of the boiling point of the water up to the critical point (100 °C to 374 °C), are drawn from different sources and are substantially less accurate, hence they should be understood and used also only as approximate values.[6][7][8][9]

To use the values corrctly, consider the following points:

  • The values apply only to smooth interfaces and in the absence other gases or gas mixtures such as air. Hence they apply only to pure phases and need a correction factor for systems in which air is present.
  • The values were not computed according formulas widely used in the US, but using somewhat more exact formulas (see below), which can also also be used to compute further values in the appropriate temperature ranges.
  • The saturated steam pressure over water in the temperature range of –100 °C to –50 °C is only extrapolated.
  • The values have various units (Pa, hPa or bar), which must be considered when reading them.

[edit] Formulas

The table values for –100 °C to 100 °C were computed by the following formulas, where T is in Kelvins and vapor pressures, Pw and Pi are in Pa.

Over Liquid Water

loge(Pw)  =  –6094.4642 T–1 + 21.1249952 – 2.724552×10–2 T + 1.6853396×10–5 T2 + 2.4575506 loge(T)

For Temperature Range: 173.15 K to 373.15 K or equivalently –100 °C to 100 °C

Over Ice

loge(Pi)  =  –5504.4088 T–1 – 3.5704628 – 1.7337458×10–2 T + 6.5204209×10–6 T2 + 6.1295027 loge(T)

For temperature range: 173.15 K to 273.15 K or equivalently –100 °C to 0 °C

[edit] Triple point

An important basic value, which is not registered in the table, is the saturated vapor pressure at the triple point of water. The internationally accepted value according to measurements of Guildner, Johnson and Jones (1976) amounts to:

Pw(ttp  =  0.01 °C)  =  611.657 Pa ± 0.010 Pa at (1-α)  =  99%
 
Values of Saturated Vapor Pressure of Water
Temp.
t in °C
Pi(t) over ice
in Pa
Pw(t) over water
in Pa
Temp.
t in °C
Pw(t) over water
in hPa
Temp.
t in °C
P(t)
in bar
Temp.
t in °C
P(t)
in bar
Temp.
t in °C
P(t)
in bar
-100 0.0013957 0.0036309 0 6.11213 100 1.01 200 15.55 300 85.88
-99 0.0017094 0.0044121 1 6.57069 101 1.05 201 15.88 301 87.09
-98 0.0020889 0.0053487 2 7.05949 102 1.09 202 16.21 302 88.32
-97 0.002547 0.0064692 3 7.58023 103 1.13 203 16.55 303 89.57
-96 0.0030987 0.0078067 4 8.13467 104 1.17 204 16.89 304 90.82
-95 0.0037617 0.0093996 5 8.72469 105 1.21 205 17.24 305 92.09
-94 0.0045569 0.011293 6 9.35222 106 1.25 206 17.60 306 93.38
-93 0.0055087 0.013538 7 10.0193 107 1.30 207 17.96 307 94.67
-92 0.0066455 0.016195 8 10.728 108 1.34 208 18.32 308 95.98
-91 0.0080008 0.019333 9 11.4806 109 1.39 209 18.70 309 97.31
-90 0.0096132 0.023031 10 12.2794 110 1.43 210 19.07 310 98.65
-89 0.011528 0.027381 11 13.1267 111 1.48 211 19.46 311 100
-88 0.013797 0.032489 12 14.0251 112 1.53 212 19.85 312 101.37
-87 0.016482 0.038474 13 14.9772 113 1.58 213 20.25 313 102.75
-86 0.019653 0.045473 14 15.9856 114 1.64 214 20.65 314 104.15
-85 0.02339 0.053645 15 17.0532 115 1.69 215 21.06 315 105.56
-84 0.027788 0.063166 16 18.1829 116 1.75 216 21.47 316 106.98
-83 0.032954 0.074241 17 19.3778 117 1.81 217 21.89 317 108.43
-82 0.039011 0.087101 18 20.6409 118 1.86 218 22.32 318 109.88
-81 0.046102 0.10201 19 21.9757 119 1.93 219 22.75 319 111.35
-80 0.054388 0.11925 20 23.3854 120 1.99 220 23.19 320 112.84
-79 0.064057 0.13918 21 24.8737 121 2.05 221 23.64 321 114.34
-78 0.07532 0.16215 22 26.4442 122 2.12 222 24.09 322 115.86
-77 0.088419 0.1886 23 28.1006 123 2.18 223 24.55 323 117.39
-76 0.10363 0.21901 24 29.847 124 2.25 224 25.02 324 118.94
-75 0.12127 0.25391 25 31.6874 125 2.32 225 25.49 325 120.51
-74 0.14168 0.29390 26 33.6260 126 2.4 226 25.98 326 122.09
-73 0.16528 0.33966 27 35.6671 127 2.47 227 26.46 327 123.68
-72 0.19252 0.39193 28 37.8154 128 2.55 228 26.96 328 125.30
-71 0.22391 0.45156 29 40.0754 129 2.62 229 27.46 329 126.93
-70 0.26004 0.51948 30 42.452 130 2.7 230 27.97 330 128.58
-69 0.30156 0.59672 31 44.9502 131 2.78 231 28.48 331 130.24
-68 0.34921 0.68446 32 47.5752 132 2.87 232 29.01 332 131.92
-67 0.40383 0.78397 33 50.3322 133 2.95 233 29.54 333 133.62
-66 0.46633 0.89668 34 53.2267 134 3.04 234 30.08 334 135.33
-65 0.53778 1.0242 35 56.2645 135 3.13 235 30.62 335 137.07
-64 0.61933 1.1682 36 59.4513 136 3.22 236 31.18 336 138.82
-63 0.71231 1.3306 37 62.7933 137 3.32 237 31.74 337 140.59
-62 0.81817 1.5136 38 66.2956 138 3.42 238 32.31 338 142.37
-61 0.93854 1.71950 39 69.9675 139 3.51 239 32.88 339 144.18
-60 1.0753 1.9509 40 73.8127 140 3.62 240 33.47 340 146.00
-59 1.2303 2.2106 41 77.8319 141 3.72 241 34.06 341 147.84
-58 1.4060 2.5018 42 82.0536 142 3.82 242 34.66 342 149.71
-57 1.6049 2.8277 43 86.4633 143 3.93 243 35.27 343 151.58
-56 1.8296 3.1922 44 91.0757 144 4.04 244 35.88 344 153.48
-55 2.0833 3.5993 45 95.8984 145 4.16 245 36.51 345 155.40
-54 2.3694 4.0535 46 100.939 146 4.27 246 37.14 346 157.34
-53 2.6917 4.5597 47 106.206 147 4.39 247 37.78 347 159.30
-52 3.0542 5.1231 48 111.708 148 4.51 248 38.43 348 161.28
-51 3.4618 5.7496 49 117.452 149 4.64 249 39.09 349 163.27
-50 3.9193 6.4454 50 123.4478 150 4.76 250 39.76 350 165.29
-49 4.4324 7.2174 51 129.7042 151 4.89 251 40.44 351 167.33
-48 5.0073 8.0729 52 136.2304 152 5.02 252 41.12 352 169.39
-47 5.6506 9.0201 53 143.0357 153 5.16 253 41.81 353 171.47
-46 6.3699 10.068 54 150.1298 154 5.29 254 42.52 354 173.58
-45 7.1732 11.225 55 157.5226 155 5.43 255 43.23 355 175.70
-44 8.0695 12.503 56 165.2243 156 5.58 256 43.95 356 177.85
-43 9.0685 13.911 57 173.2451 157 5.72 257 44.68 357 180.02
-42 10.181 15.463 58 181.5959 158 5.87 258 45.42 358 182.21
-41 11.419 17.17 59 190.2874 159 6.03 259 46.16 359 184.43
-40 12.794 19.048 60 199.3309 160 6.18 260 46.92 360 186.66
-39 14.321 21.11 61 208.7378 161 6.34 261 47.69 361 188.93
-38 16.016 23.372 62 218.5198 162 6.50 262 48.46 362 191.21
-37 17.893 25.853 63 228.6888 163 6.67 263 49.25 363 193.52
-36 19.973 28.57 64 239.2572 164 6.84 264 50.05 364 195.86
-35 22.273 31.544 65 250.2373 165 7.01 265 50.85 365 198.22
-34 24.816 34.795 66 261.6421 166 7.18 266 51.67 366 200.61
-33 27.624 38.347 67 273.4845 167 7.36 267 52.49 367 203.02
-32 30.723 42.225 68 285.7781 168 7.55 268 53.33 368 205.47
-31 34.140 46.453 69 298.5363 169 7.73 269 54.17 369 207.93
-30 37.903 51.060 70 311.7731 170 7.92 270 55.03 370 210.43
-29 42.046 56.077 71 325.5029 171 8.11 271 55.89 371 212.96
-28 46.601 61.534 72 339.7401 172 8.31 272 56.77 372 215.53
-27 51.607 67.466 73 354.4995 173 8.51 273 57.66 373 218.13
-26 57.104 73.909 74 369.7963 174 8.72 274 58.56 374 220.64
-25 63.134 80.902 75 385.6459 175 8.92 275 59.46 374.15 221.20
-24 69.745 88.485 76 402.0641 176 9.14 276 60.38
-23 76.987 96.701 77 419.0669 177 9.35 277 61.31
-22 84.914 105.60 78 436.6708 178 9.57 278 62.25
-21 93.584 115.22 79 454.8923 179 9.80 279 63.20
-20 103.06 125.63 80 473.7485 180 10.03 280 64.17
-19 113.41 136.88 81 493.2567 181 10.26 281 65.14
-18 124.70 149.01 82 513.4345 182 10.50 282 66.12
-17 137.02 162.11 83 534.3000 183 10.74 283 67.12
-16 150.44 176.23 84 555.8714 184 10.98 284 68.13
-15 165.06 191.44 85 578.1673 185 11.23 285 69.15
-14 180.97 207.81 86 601.2068 186 11.49 286 70.18
-13 198.27 225.43 87 625.009 187 11.75 287 71.22
-12 217.07 244.37 88 649.5936 188 12.01 288 72.27
-11 237.49 264.72 89 674.9806 189 12.28 289 73.34
-10 259.66 286.57 90 701.1904 190 12.55 290 74.42
-9 283.69 310.02 91 728.2434 191 12.83 291 75.51
-8 309.75 335.16 92 756.1608 192 13.11 292 76.61
-7 337.97 362.10 93 784.9639 193 13.40 293 77.72
-6 368.52 390.95 94 814.6743 194 13.69 294 78.85
-5 401.58 421.84 95 845.3141 195 13.99 295 79.99
-4 437.31 454.88 96 876.9057 196 14.29 296 81.14
-3 475.92 490.19 97 909.4718 197 14.60 297 82.31
-2 517.62 527.93 98 943.0355 198 14.91 298 83.48
-1 562.62 568.22 99 977.6203 199 15.22 299 84.67
0 611.153 611.213 100 1013.25 200 15.55 300 85.88
Temp.
t in °C
Pi(t) over ice
in Pa
Pw(t) over water
in Pa
Temp.
t in °C
Pw(t) over water
in hPa
Temp.
t in °C
P(t)
in bar
Temp.
t in °C
P(t)
in bar
Temp.
t in °C
P(t)
in barbar


Material is copied in from

[edit] Drucktabellen

Die in der folgenden Tabelle dargestellten Größen sind temperatur- und teilweise auch druckabhängig, richten sich aber in jedem Fall nach dem Aggregatzustand des Wassers (hier s = fest; l = flüssig; g = gasförmig). Dieser wird durch Druck und Temperatur eindeutig bestimmt. Alle Daten wurden Grigull et. al. (1990) entnommen, welche sie nach der Vorgabe durch die "Formulation of the Thermodynamic Properties of Ordinary Water Substance for Scientific and General Use" (1984) der IAPWS mit einer verringerten Iterationsschranke berechneten. Es handelt sich um:

  • \vartheta - die Celsius-Temperatur in Grad Celsius
  • v – das spezifische Volumen in Kubikdezimeter je Kilogramm
  • h – die spezifische Enthalpie in Kilojoule je Kilogramm
  • u – die spezifische Innere Energie in Kilojoule je Kilogramm
  • s – die spezifische Entropie in Kilojoule je Kilogramm mal Kelvin
  • cp - die spezifische Wärmekapazität bei konstantem Druck in Kilojoule je Kilogramm mal Kelvin
  • γ – Volumenausdehnungskoeffzient in 10-3 durch Kelvin
  • λ – Wärmeleitfähigkeit in Milliwatt je Meter mal Kelvin
  • η – Viskosität in Mikropascal mal Sekunde
  • σ – Oberflächenspannung in Millinewton je Meter

[edit] Standardbedingungen

In der folgenden Tabelle handelt es sich um die Stoffdaten bei Standarddruck (SATP), also 0,1 Megapascal (entspricht einem bar). Bis zu einer Temperatur von 99,63 °C, dem Siedepunkt des Wasser bei diesem Druck, liegt das Wasser als Flüssigkeit vor, darüber als Wasserdampf.

\vartheta
°C
v
dm³/kg
h
kJ/kg
u
kJ/kg
s
kJ/(kg·K)
cp
kJ/(kg·K)
γ
10-3/K
λ
mW / (m·K)
η
μPa·s
σ1
mN/m
0 1,0002 0,06 -0,04 -0,0001 4,228 -0,080 561,0 1792 75,65
5 1,0000 21,1 21,0 0,076 4,200 0,011 570,6 1518 74,95
10 1,0003 42,1 42,0 0,151 4,188 0,087 580,0 1306 74,22
15 1,0009 63,0 62,9 0,224 4,184 0,152 589,4 1137 73,49
20 1,0018 83,9 83,8 0,296 4,183 0,209 598,4 1001 72,74
25 1,0029 104,8 104,7 0,367 4,183 0,259 607,2 890,4 71,98
30 1,0044 125,8 125,7 0,437 4,183 0,305 615,5 797,7 71,20
35 1,0060 146,7 146,6 0,505 4,183 0,347 623,3 719,6 70,41
40 1,0079 167,6 167,5 0,572 4,182 0,386 630,6 653,3 69,60
45 1,0099 188,5 188,4 0,638 4,182 0,423 637,3 596,3 68,78
50 1,0121 209,4 209,3 0,704 4,181 0,457 643,6 547,1 67,95
60 1,0171 251,2 251,1 0,831 4,183 0,522 654,4 466,6 66,24
70 1,0227 293,1 293,0 0,955 4,187 0,583 663,1 404,1 64,49
80 1,0290 335,0 334,9 1,075 4,194 0,640 670,0 354,5 62,68
90 1,0359 377,0 376,9 1,193 4,204 0,696 675,3 314,6 60,82
99,63 l 1,0431 417,5 417,4 1,303 4,217 0,748 679,0 283,0 58,99
g 1694,3 2675 2505 7,359 2,043 2,885 25,05 12,26
100 1696,1 2675 2506 7,361 2,042 2,881 25,08 12,27 58,92
200 2172,3 2874 2657 7,833 1,975 2,100 33,28 16,18 37,68
300 2638,8 3073 2810 8,215 2,013 1,761 43,42 20,29 14,37
500 3565,5 3488 3131 8,834 2,135 1,297 66,970 28,57
750 4721,0 4043 3571 9,455 2,308 0,978 100,30 38,48
1000 5875,5 4642 4054 9,978 2,478 0,786 136,3 47,66
1 Die Werte der Oberflächenspannung gelten nicht für den Normaldruck, sondern für den zur jeweiligen Temperatur gehörigen Sättigungsdampfdruck.

[edit] Tripelpunkt

In der folgenden Tabelle handelt es sich um die Stoffdaten bei einem Druck von 0,0006117 Megapascal (entspricht 0,006117 bar). Bis zu einer Temperatur von 0,01 °C, dem Tripelpunkt des Wassers, liegt das Wasser normalerweise als Eis vor, wurde jedoch hier für unterkühltes Wasser tabelliert. Am Tripelpunkt selbst kann es sowohl als Eis als auch Flüssigkeit oder Wasserdampf vorliegen, bei höheren Temperaturen handelt es sich jedoch wiederum um Wasserdampf.

\vartheta
°C
v
dm³/kg
h
kJ/kg
u
kJ/kg
s
kJ/(kg·K)
cp
kJ/(kg·K)
γ
10-3/K
λ
mW / (m·K)
η
μPa·s
σ1
mN/m
0 1,0002 -0,04 -0,04 -0,0002 4,339 -0,081 561,0 1792
0,1 s 1,0908 -333,4 -333,4 -1,221 1,93 0,1 2,2
l 1,0002 0,0 0 0 4,229 -0,080 561,0 1791
g 205986 2500 2374 9,154 1,868 3,672 17,07 9,22
5 209913 2509 2381 9,188 1,867 3,605 17,33 9,34
10 213695 2519 2388 9,222 1,867 3,540 17,60 9,46
15 217477 2528 2395 9,254 1,868 3,478 17,88 9,59
20 221258 2537 2402 9,286 1,868 3,417 18,17 9,73
25 225039 2547 2409 9,318 1,869 3,359 18,47 9,87
30 228819 2556 2416 9,349 1,869 3,304 18,78 10,02
35 232598 2565 2423 9,380 1,870 3,249 19,10 10,17
40 236377 2575 2430 9,410 1,871 3,197 19,43 10,32
45 240155 2584 2437 9,439 1,872 3,147 19,77 10,47
50 243933 2593 2444 9,469 1,874 3,098 20,11 10,63
60 251489 2612 2459 9,526 1,876 3,004 20,82 10,96
70 259043 2631 2473 9,581 1,880 2,916 21,56 11,29
80 266597 2650 2487 9,635 1,883 2,833 22,31 11,64
90 274150 2669 2501 9,688 1,887 2,755 23,10 11,99
100 281703 2688 2515 9,739 1,891 2,681 23,90 12,53
200 357216 2879 2661 10,194 1,940 2,114 32,89 16,21
300 432721 3076 2811 10,571 2,000 1,745 43,26 20,30
500 583725 3489 3132 11,188 2,131 1,293 66,90 28,57
750 772477 4043 3571 11,808 2,307 0,977 100,20 38,47
1000 961227 4642 4054 12,331 2,478 0,785 136,30 47,66
1 Die Werte der Oberflächenspannung sind hier identisch zur ersten Tabelle, wobei in gleicherweise der Sättigungsdampfdruck angewendet werden muss.

[edit] Sättigungsdampfdruck

Folgende Tabelle basiert auf verschiedenen, sich gegenseitig ergänzenden Quellen bzw. Näherungsformeln, was jedoch auch nach sich zieht, dass die Werte von unterschiedlicher Güte und Genauigkeit sind. Die Werte des Temperaturbereichs von -100 °C bis 100 °C wurden aus D. Sonntag (1982) entnommen und sind daher recht einheitlich und genau, wenn auch nicht auf dem neuesten Stand. Die Werte des Temperaturbereichs vom Siedepunkt des Wassers bis zum kritischen Punkt, also von 100 °C bis 374 °C, stammen jedoch aus unterschiedlichen Quellen und sind daher wesentlich ungenauer, folglich sollten sie auch nur als Orientierungswerte verstanden und genutzt werden.

Zur richtigen Nutzung der Werte sind folgende Punkte zu beachten:

  • Die Werte gelten nur für ebene Oberflächen und in der Abwesenheit anderer Gase bzw. Gasgemische wie Luft. Sie gelten also lediglich für reine Phasen und benötigen einen Korrekturfaktor bei der Anwesenheit von Luft.
  • Die Werte wurden nicht nach der Magnus-Formel berechnet, sondern nach etwas genaueren Formeln (siehe unten), mit deren Hilfe sich auch weitere Werte in den entsprechenden Temperaturintervallen berechnen lassen.
  • Die Sättigungsdampfdrücke über Wasser im Temperaturintervall von -100 °C bis -50 °C wurden lediglich extrapoliert.
  • Die Werte haben unterschiedliche Einheiten (Pa, hPa oder bar), was es beim ablesen zu beachten gilt.

[edit] Formeln

Berechnet wurden die Tabellenwerte von -100 °C bis 100 °C durch folgende Formeln:

Über Wasser:

E_w (T) = \exp \left(-6094{,}4642 \cdot T^{-1} + 21{,}1249952 - 2{,}724552 \cdot 10^{-2} \cdot T + 1{,}6853396 \cdot 10^{-5} \cdot T^2 + 2{,}4575506 \cdot \ln T\right)

Temperaturintervall:

173{,}15\ \mathrm{K} \leq T \leq 373{,}15\ \mathrm{K}, entspricht -100 \,^{\circ}\mathrm{C}\leq t \leq 100 \,^{\circ}\mathrm{C}

Über Eis:

E_i (T) = \exp \left( -5504{,}4088 \cdot T^{-1} - 3{,}5704628 - 1{,}7337458 \cdot 10^{-2} \cdot T + 6{,}5204209 \cdot 10^{-6} \cdot T^2 + 6{,}1295027 \cdot \ln T\right)

Temperaturintervall:

173{,}15\ \mathrm{K} \leq T \leq 273{,}15\ \mathrm{K}, entspricht -100 \,^{\circ}\mathrm{C} \leq t \leq 0 \,^{\circ}\mathrm{C}

Werden die Temperaturen in Kelvin eingesetzt, so ergibt sich der jeweilige Sättigungsdampfdruck E(T) in Pa.

[edit] Tripelpunkt

Ein wichtiger Grundwert, der nicht in die Tabelle eingetragen wurde, ist der Sättigungsdampfdruck beim Tripelpunkt des Wassers. Der international akzeptierte Bestwert nach Messungen von Guildner, Johnson und Jones (1976) beträgt:

E_w(t_{tr}=0{,}01 \,^{\circ}\mathrm{C}) = 611{,}657\ \mathrm{Pa}\ \pm 0{,}010\ \mathrm{Pa}\ \mathrm{bei}\ (1-\alpha)=99\mathrm{\%}

[edit] Tabelle

Beispielwerte des Sättigungsdampfdrucks von Wasser
Temperatur
t in °C
Ei(t) über Eis
p in Pa
Ew(t) über Wasser
p in Pa
Temperatur
t in °C
E(t) über Wasser
p in hPa
Temperatur
t in °C
E(t)
p in bar
Temperatur
t in °C
E(t)
p in bar
Temperatur
t in °C
E(t)
p in bar
-100 0,0013957 0,0036309 0 6,11213 100 1,01 200 15,55 300 85,88
-99 0,0017094 0,0044121 1 6,57069 101 1,05 201 15,88 301 87,09
-98 0,0020889 0,0053487 2 7,05949 102 1,09 202 16,21 302 88,32
-97 0,002547 0,0064692 3 7,58023 103 1,13 203 16,55 303 89,57
-96 0,0030987 0,0078067 4 8,13467 104 1,17 204 16,89 304 90,82
-95 0,0037617 0,0093996 5 8,72469 105 1,21 205 17,24 305 92,09
-94 0,0045569 0,011293 6 9,35222 106 1,25 206 17,6 306 93,38
-93 0,0055087 0,013538 7 10,0193 107 1,3 207 17,96 307 94,67
-92 0,0066455 0,016195 8 10,728 108 1,34 208 18,32 308 95,98
-91 0,0080008 0,019333 9 11,4806 109 1,39 209 18,7 309 97,31
-90 0,0096132 0,023031 10 12,2794 110 1,43 210 19,07 310 98,65
-89 0,011528 0,027381 11 13,1267 111 1,48 211 19,46 311 100
-88 0,013797 0,032489 12 14,0251 112 1,53 212 19,85 312 101,37
-87 0,016482 0,038474 13 14,9772 113 1,58 213 20,25 313 102,75
-86 0,019653 0,045473 14 15,9856 114 1,64 214 20,65 314 104,15
-85 0,02339 0,053645 15 17,0532 115 1,69 215 21,06 315 105,56
-84 0,027788 0,063166 16 18,1829 116 1,75 216 21,47 316 106,98
-83 0,032954 0,074241 17 19,3778 117 1,81 217 21,89 317 108,43
-82 0,039011 0,087101 18 20,6409 118 1,86 218 22,32 318 109,88
-81 0,046102 0,10201 19 21,9757 119 1,93 219 22,75 319 111,35
-80 0,054388 0,11925 20 23,3854 120 1,99 220 23,19 320 112,84
-79 0,064057 0,13918 21 24,8737 121 2,05 221 23,64 321 114,34
-78 0,07532 0,16215 22 26,4442 122 2,12 222 24,09 322 115,86
-77 0,088419 0,1886 23 28,1006 123 2,18 223 24,55 323 117,39
-76 0,10363 0,21901 24 29,847 124 2,25 224 25,02 324 118,94
-75 0,12127 0,25391 25 31,6874 125 2,32 225 25,49 325 120,51
-74 0,14168 0,2939 26 33,626 126 2,4 226 25,98 326 122,09
-73 0,16528 0,33966 27 35,6671 127 2,47 227 26,46 327 123,68
-72 0,19252 0,39193 28 37,8154 128 2,55 228 26,96 328 125,3
-71 0,22391 0,45156 29 40,0754 129 2,62 229 27,46 329 126,93
-70 0,26004 0,51948 30 42,452 130 2,7 230 27,97 330 128,58
-69 0,30156 0,59672 31 44,9502 131 2,78 231 28,48 331 130,24
-68 0,34921 0,68446 32 47,5752 132 2,87 232 29,01 332 131,92
-67 0,40383 0,78397 33 50,3322 133 2,95 233 29,54 333 133,62
-66 0,46633 0,89668 34 53,2267 134 3,04 234 30,08 334 135,33
-65 0,53778 1,0242 35 56,2645 135 3,13 235 30,62 335 137,07
-64 0,61933 1,1682 36 59,4513 136 3,22 236 31,18 336 138,82
-63 0,71231 1,3306 37 62,7933 137 3,32 237 31,74 337 140,59
-62 0,81817 1,5136 38 66,2956 138 3,42 238 32,31 338 142,37
-61 0,93854 1,7195 39 69,9675 139 3,51 239 32,88 339 144,18
-60 1,0753 1,9509 40 73,8127 140 3,62 240 33,47 340 146
-59 1,2303 2,2106 41 77,8319 141 3,72 241 34,06 341 147,84
-58 1,406 2,5018 42 82,0536 142 3,82 242 34,66 342 149,71
-57 1,6049 2,8277 43 86,4633 143 3,93 243 35,27 343 151,58
-56 1,8296 3,1922 44 91,0757 144 4,04 244 35,88 344 153,48
-55 2,0833 3,5993 45 95,8984 145 4,16 245 36,51 345 155,4
-54 2,3694 4,0535 46 100,939 146 4,27 246 37,14 346 157,34
-53 2,6917 4,5597 47 106,206 147 4,39 247 37,78 347 159,3
-52 3,0542 5,1231 48 111,708 148 4,51 248 38,43 348 161,28
-51 3,4618 5,7496 49 117,452 149 4,64 249 39,09 349 163,27
-50 3,9193 6,4454 50 123,4478 150 4,76 250 39,76 350 165,29
-49 4,4324 7,2174 51 129,7042 151 4,89 251 40,44 351 167,33
-48 5,0073 8,0729 52 136,2304 152 5,02 252 41,12 352 169,39
-47 5,6506 9,0201 53 143,0357 153 5,16 253 41,81 353 171,47
-46 6,3699 10,068 54 150,1298 154 5,29 254 42,52 354 173,58
-45 7,1732 11,225 55 157,5226 155 5,43 255 43,23 355 175,7
-44 8,0695 12,503 56 165,2243 156 5,58 256 43,95 356 177,85
-43 9,0685 13,911 57 173,2451 157 5,72 257 44,68 357 180,02
-42 10,181 15,463 58 181,5959 158 5,87 258 45,42 358 182,21
-41 11,419 17,17 59 190,2874 159 6,03 259 46,16 359 184,43
-40 12,794 19,048 60 199,3309 160 6,18 260 46,92 360 186,66
-39 14,321 21,11 61 208,7378 161 6,34 261 47,69 361 188,93
-38 16,016 23,372 62 218,5198 162 6,5 262 48,46 362 191,21
-37 17,893 25,853 63 228,6888 163 6,67 263 49,25 363 193,52
-36 19,973 28,57 64 239,2572 164 6,84 264 50,05 364 195,86
-35 22,273 31,544 65 250,2373 165 7,01 265 50,85 365 198,22
-34 24,816 34,795 66 261,6421 166 7,18 266 51,67 366 200,61
-33 27,624 38,347 67 273,4845 167 7,36 267 52,49 367 203,02
-32 30,723 42,225 68 285,7781 168 7,55 268 53,33 368 205,47
-31 34,14 46,453 69 298,5363 169 7,73 269 54,17 369 207,93
-30 37,903 51,06 70 311,7731 170 7,92 270 55,03 370 210,43
-29 42,046 56,077 71 325,5029 171 8,11 271 55,89 371 212,96
-28 46,601 61,534 72 339,7401 172 8,31 272 56,77 372 215,53
-27 51,607 67,466 73 354,4995 173 8,51 273 57,66 373 218,13
-26 57,104 73,909 74 369,7963 174 8,72 274 58,56 374 220,64
-25 63,134 80,902 75 385,6459 175 8,92 275 59,46 374,15 221,2
-24 69,745 88,485 76 402,0641 176 9,14 276 60,38
-23 76,987 96,701 77 419,0669 177 9,35 277 61,31
-22 84,914 105,6 78 436,6708 178 9,57 278 62,25
-21 93,584 115,22 79 454,8923 179 9,8 279 63,2
-20 103,06 125,63 80 473,7485 180 10,03 280 64,17
-19 113,41 136,88 81 493,2567 181 10,26 281 65,14
-18 124,7 149,01 82 513,4345 182 10,5 282 66,12
-17 137,02 162,11 83 534,3 183 10,74 283 67,12
-16 150,44 176,23 84 555,8714 184 10,98 284 68,13
-15 165,06 191,44 85 578,1673 185 11,23 285 69,15
-14 180,97 207,81 86 601,2068 186 11,49 286 70,18
-13 198,27 225,43 87 625,009 187 11,75 287 71,22
-12 217,07 244,37 88 649,5936 188 12,01 288 72,27
-11 237,49 264,72 89 674,9806 189 12,28 289 73,34
-10 259,66 286,57 90 701,1904 190 12,55 290 74,42
-9 283,69 310,02 91 728,2434 191 12,83 291 75,51
-8 309,75 335,16 92 756,1608 192 13,11 292 76,61
-7 337,97 362,1 93 784,9639 193 13,4 293 77,72
-6 368,52 390,95 94 814,6743 194 13,69 294 78,85
-5 401,58 421,84 95 845,3141 195 13,99 295 79,99
-4 437,31 454,88 96 876,9057 196 14,29 296 81,14
-3 475,92 490,19 97 909,4718 197 14,6 297 82,31
-2 517,62 527,93 98 943,0355 198 14,91 298 83,48
-1 562,62 568,22 99 977,6203 199 15,22 299 84,67
0 611,153 611,213 100 1013,25 200 15,55 300 85,88

[edit] Literatur

  • L.A. Guildner, D.P. Johnson und F.E. Jones (1976): Vapor pressure of Water at Its Triple Point. J. Res. NBS - A, Vol. 80A, No. 3, p. 505 - 521
  • Klaus Scheffler (1981): Wasserdampftafeln: thermodynam. Eigenschaften von Wasser u. Wasserdampf bis 800°C u. 800 bar (Water Vapor Tables: Thermodynamic Characteristics of Water and Water Vapor to 800°C and 800 bar), Berlin [u.a.] ISBN 3540109307
  • D. Sonntag und D. Heinze (1982): Sättigungsdampfdruck- und Sättigungsdampfdichtetafeln für Wasser und Eis. (Saturated Vapor Pressure and Saturated Vapor Density Tables for Water and Ice)(1. Aufl.), VEB Deutscher Verlag für Grundstoffindustrie
  • Ulrich Grigull, Johannes Staub, Peter Schiebener (1990): Steam Tables in SI-Units - Wasserdampftafeln. Springer-Verlagdima gmbh


[edit] Notes

  1. ^ Perman, Jour. Chem. Soc. 83 1168 (1903)
  2. ^ White, Frank M.: Fluid Mechanics 4th ed. McGraw Hill
  3. ^ Lange's Handbook of Chemistry, 10th ed. page 1524
  4. ^ White, Frank M.: Fluid Mechanics 4th ed. McGraw Hill
  5. ^ Lange's Handbook of Chemistry, 10th ed. page 1524
  6. ^ L.A. Guildner, D.P. Johnson und F.E. Jones (1976): Vapor pressure of Water at Its Triple Point. J. Res. NBS - A, Vol. 80A, No. 3, p. 505 - 521
  7. ^
  8. ^ D. Sonntag und D. Heinze (1982): Sättigungsdampfdruck- und Sättigungsdampfdichtetafeln für Wasser und Eis. (Saturated Vapor Pressure and Saturated Vapor Density Tables for Water and Ice)(1. Aufl.), VEB Deutscher Verlag für Grundstoffindustrie
  9. ^ Ulrich Grigull, Johannes Staub, Peter Schiebener (1990): Steam Tables in SI-Units - Wasserdampftafeln. Springer-Verlagdima gmbh
In other languages