User:Jockmonkey

From Wikipedia, the free encyclopedia

2x+9 \cdot\ {1 \over 2} * {2x \over 1} * {1 \over \sqrt{x^2-4}} + 2\sqrt{x^2-4}


2x+9 \cdot\ {2x \over 2\sqrt{x^2-4}} + 2\sqrt{x^2-4}

{x(2x+9) \over \sqrt{x^2-4}} + 2\sqrt{x^2-4}

A = P(1 + r)n

Prove that 2\cos^2 \theta\ \over 1 - \sin \theta\ = 2 + \sin \theta\

Simplify 3sin2A + 4cos2A − 3


Prove that 1 \over \csc \theta\ - \cot \theta\ 1 \over \csc \theta + \cot \theta = 2\cot \theta\

2\cos^2 \theta\ \over 1 - \sin \theta\ = 2 + \sin \theta\

LHS: 2 - 2\sin^2 \theta\ \over 1 - \sin^2

2\left (1 - sin^2 \theta\ \right) \over 1 - \sin \theta\

2\left (1 + \sin \theta\ \right) = 2 + 2\sin \theta\

2 + 2\sin \theta\ = 2 + 2\sin \theta\

.:.LHS = RHS

V = \pi\int_{1}^{\log 3} e^y\