Ivan A. Getting
From Wikipedia, the free encyclopedia
Ivan A. Getting (January 18, 1912—October 11, 2003) was an American Physicist and Electrical Engineer, credited (along with Bradford Parkinson) with the development of the Global Positioning System (GPS). Inventor of the SCR-584 automatic microwave tracking fire-control system that is credited with enabling anti-aircraft guns to destroy 95% of the V-1 German cruise bombs that attacked London late in the Second World War.
Contents |
[edit] Biography and positions held
Ivan A. Getting was born on 18 January, 1912 in New York City to family of Slovak emigrants and grew up in Pittsburgh, Pennsylvania. He attended the Massachusetts Institute of Technology (MIT) as an Edison Scholar (Bachelor of Science, 1933); and Oxford University as a Graduate Rhodes Scholar (D.Phil., 1935). He then worked at Harvard University on nuclear instrumentation and cosmic rays (Junior Fellow, 1935-1940) and the MIT Radiation Laboratory (1940-1950; Director of the Division on Fire Control and Army Radar, Associate Professor 1945; Professor 1946). During the Second World War he was a special consultant to Secretary of War Henry L. Stimson on the Army’s use of radar. He also served as head of the Naval Fire Control Section of the Office of Scientific Research and Development, member of the Combined Chiefs of Staff Committee on Searchlight and Fire Control, and head of the Radar Panel of the Research and Development Board of the Department of Defense.
In 1950, during the Korean War, Getting became Assistant for Development Planning, Deputy Chief of Staff, United States Air Force; and in 1951, Vice President for Engineering and Research at the Raytheon Corporation (1951-1960). While at Raytheon, Getting also served on the Undersea Warfare Committee of the National Research Council.
In 1960 Getting became founding President of the Aerospace Corporation (1960-1977). The Corporation was established at the request of the Secretary of the Air Force as a non-profit organization to apply "the full resources of modern science and technology to the problem of achieving those continued advances in ballistic missiles and space systems, which are basic to national security." Getting was also a founding member of the Air Force Scientific Advisory Group (later renamed the Scientific Advisory Board) and chair of its Electronics Panel. In 1978 he served as President of the Institute of Electrical and Electronics Engineers. He served on the Board of Directors of the Northrop Corporation and the Board of Trustees of the Environmental Research Institute of Michigan.
Getting retired from the Aerospace Corporation in 1977, and died on October 11, 2003, in Coronado, California.
[edit] Major technical and administrative contributions
While at MIT Radiation Laboratory, Getting’s group developed the first automatic microwave tracking fire control radar, the SCR 584. This system, along with the proximity fuze, was credited with helping to save London from destruction at the end of the Second World War by intercepting and enabling the targeting of German V-1 cruise bombs (also known as "doodlebugs" or "buzz bombs").
Getting was an early designer and proponent of satellite-based navigation systems which led to the development and deployment of the Global Positioning System (GPS). While in Raytheon he oversaw the development of the first three-dimensional, time-difference-of-arrival position-finding system – developed in response to an Air Force requirement for a guidance system to be used with a proposed Intercontinental Ballistic Missile (ICBM) that would achieve mobility by traveling on a railroad system. While in the Aerospace Corporation he oversaw studies on the use of satellites as the basis for a navigation system for vehicles moving rapidly in three dimensions. In addition to his technical contributions to GPS, Getting was a tireless advocate of the project, in the face of early resistance from the Pentagon.
Other projects include:
At Harvard: development of the first high-speed flip-flop circuit.
At the MIT Radiation Laboratory: Development of the Navy GFCS MK-56 anti-aircraft fire control system; development and building of a 350-million electro volt synchrotron.
In Raytheon: development of the Sparrow III and Hawk missile systems; commercial production of transistors.
As a consultant to the US government: implementation of the Quick Reaction Capability for Electronic Counter-Measures; establishment of the SHAPE [Supreme Headquarters Allied Powers, Europe] Laboratory at the Hague; deployment of U.S. air defense capability called the Semi-Automatic Ground Environment (radar) system; direction of studies on MX missile basing and long-range combat aircraft; technical analysis and design of a long-range supersonic bomber capable of reaching the former Soviet Union and returning without refueling (Getting's work is credited in the reinstatement of the B-1 bomber funding by the U.S. Congress).
As member of the Undersea Warfare Committee of the National Research Council: Associate Director of Project Nobska sponsored by the U.S. Navy and concerning submarine warfare weapons; recommended a submarine-based, solid-propellant intermediate-range ballistic missile that formed the basis for the Polaris missile.
In Aerospace Corporation: planning for new ballistic missile systems; oversight of space launch systems; development of high-powered chemical lasers; contributions to the Mercury and Gemini space launch systems.
[edit] Major awards and recognitions
Presidential Medal of Merit (1948).
The Naval Ordnance Development Award.
The Air Force Exceptional Service Award (1960).
IEEE Aerospace and Electronic Systems Pioneer Award (1975).
The Kitty Hawk Award (1975).
The Institute of Electrical and Electronic Engineer’s Pioneer Award and Founders Medal (1989).
The Department of Defense Medal for Distinguished Public Service (1997).
The John Fritz Medal (1998).
Air Force Space and Missile Pioneers Hall of Fame at Peterson Air Force Base in Colorado Springs.
San Diego Aerospace Museum's International Aerospace Hall of Fame (2002).
Navy Superior Public Service Award (1999).
The National Academy of Engineering Charles Stark Draper Prize (with Bradford Parkinson, 2003).
National Inventors Hall of Fame (posthumously, 2004).