Ionic polarization
From Wikipedia, the free encyclopedia
In chemistry, ionic polarization is polarization which is caused by relative displacements between positive and negative ions in ionic crystals (for example, NaCl).
If crystals or molecules do not consist of only atoms of the same kind, the distribution of charges around an atom in the crystals or molecules leans to positive or negative. As a result, when lattice vibrations or molecular vibrations induce relative displacements of the atoms, the centers of positive and negative charges might be in different locations. These center positions are affected by the symmetry of the displacements. When the centers don't correspond, polarizations arise in molecules or crystals. This polarization is called ionic polarization.
Ionic polarization causes ferroelectric transition as well as dipolar polarization. The transition which is caused by the order of the directional orientations of permanent dipoles along a particular direction is called order-disorder phase transition. The transition which is caused by ionic polarizations in crystals is called displacive phase transition.