Ion implantation
From Wikipedia, the free encyclopedia
Ion implantation is a materials engineering process by which ions of a material can be implanted into another solid, thereby changing the physical properties of the solid. Ion implantation is used in semiconductor device fabrication and in metal finishing, as well as various applications in materials science research. The ions introduce both a chemical change in the target, in that they can be a different element than the target, and a structural change, in that the crystal structure of the target can be damaged or even destroyed.
Ion implantation equipment typically consists of an ion source, where ions of the desired element are produced, an accelerator, where the ions are electrostatically accelerated to a high energy, and a target chamber, where the ions impinge on a target, which is the material to be implanted. Each ion is typically a single atom, and thus the actual amount of material implanted in the target is the integral over time of the ion current. This amount is called the dose. The currents supplied by implanters are typically small (microamperes), and thus the dose which can be implanted in a reasonable amount of time is small. Thus, ion implantation finds application in cases where the amount of chemical change required is small.
Typical ion energies are in the range of 2 to 500 keV (1,600 to 80,000 aJ). Energies in the range 1 to 10 keV (160 to 1,600 aJ) can be used, but result in a penetration of only a few nanometers or less. Energies lower than this result in very little damage to the target, and fall under the designation ion beam deposition. Higher energies can also be used: accelerators capable of 5 MeV (800,000 aJ) are common. However, there is often great structural damage to the target, and because the depth distribution is broad, the net composition change at any point in the target will be small.
The energy of the ions, as well as the ion species and the composition of the target determine the depth of penetration of the ions in the solid: A monoenergetic ion beam will generally have a broad depth distribution. The average penetration depth is called the range of the ions. Under typical circumstances ion ranges will be between 10 nanometers and 1 micrometer. Thus, ion implantation is especially useful in cases where the chemical or structural change is desired to be near the surface of the target. Ions gradually lose their energy as they travel through the solid, both from occasional collisions with target atoms (which cause abrupt energy transfers) and from a mild drag from overlap of electron orbitals, which is a continuous process. The loss of ion energy in the target is called stopping.
Contents |
[edit] Application in semiconductor device fabrication
[edit] Doping
The introduction of dopants in a semiconductor is the most common application of ion implantation. Dopant ions such as boron, phosphorus or arsenic are generally created from a gas source, so that the purity of the source can be very high. These gases tend to be very hazardous. When implanted in a semiconductor, each dopant atom creates a charge carrier in the semiconductor (hole or electron, depending on if it is a p-type or n-type dopant), thus modifying the conductivity of the semiconductor in its vicinity.
[edit] Silicon on insulator
SOI wafers are produced by one of two main methods, both of which rely on ion implantation:
- SIMOX - Separation by IMplantation of OXygen: Oxygen can be implanted at high energy into a silicon substrate, at a high enough dose that subsequent high temperature annealing forms an oxide layer underneath the surface layer of silicon. The oxide is an insulator, thus producing a silicon on insulator (SOI) structure.
- Smart Cut™: First, oxidized surfaces are grown on two wafers, and then bonded together. Most of the top wafer is then cleaved away along a band of hydrogen bubbles which form from implanted ions. The thin layer of silicon that is left behind is isolated from the substrate by what were originally the surface oxide layers.
[edit] Mesotaxy
Mesotaxy is the term for the growth of a crystallographically matching phase underneath the surface of the host crystal (compare to epitaxy, which is the growth of the matching phase on the surface of a substrate). In this process, ions are implanted at a high enough energy and dose into a material to create a layer of a second phase, and the temperature is controlled so that the crystal structure of the target is not destroyed. The crystal orientation of the layer can be engineered to match that of the target, even though the exact crystal structure and lattice constant may be very different. For example, after the implantation of nickel ions into a silicon wafer, a layer of nickel silicide can be grown in which the crystal orientation of the silicide matches that of the silicon.
[edit] Application in metal finishing
[edit] Tool steel toughening
Nitrogen or other ions can be implanted into a tool steel target (drill bits, for example). The structural change caused by the implantation produces a surface compression in the steel, which prevent crack propagation and thus makes the material more resistant to fracture. The chemical change can also make the tool more resistant to corrosion.
[edit] Surface finishing
In some applications, for example prosthetic devices such as artificial joints, it is desired to have surfaces very resistant to both chemical corrosion and wear due to friction. Ion implantation is used in such cases to engineer the surfaces of such devices for more reliable performance. As in the case of tool steels, the surface modification caused by ion implantation includes both a surface compression which prevents crack propagation and an alloying of the surface to make it more chemically resistant to corrosion.
[edit] Other issues in ion implantation
[edit] Crystallographic damage
Each individual ion produces many point defects in the target crystal on impact such as vacancies and interstitials. Vacancies are crystal lattice points unoccupied by an atom: in this case the ion collides with a target atom, resulting in transfer of a significant amount of energy to the target atom such that it leaves its crystal site. This target atom then itself becomes a projectile in the solid, and can cause successive collision events. Interstitials result when such atoms (or the original ion itself) come to rest in the solid, but find no vacant space in the lattice to reside. These point defects can migrate and cluster with each other, resulting in dislocation loops and other defects.
[edit] Damage recovery
Because ion implantation causes damage to the crystal structure of the target which is often unwanted, ion implantation processing is often followed by a thermal annealing. This can be referred to as damage recovery.
[edit] Amorphization
The amount of crystallographic damage can be enough to completely amorphize the surface of the target: i.e. it can become an amorphous solid (such a solid produced from a melt is called a glass). In some cases, complete amorphization of a target is preferable to a highly defective crystal: An amorphized film can be regrown at a lower temperature than required to anneal a highly damaged crystal.
[edit] Sputtering
Some of the collision events result in atoms being ejected from the surface, and thus ion implantation will slowly etch away a surface. The effect is only appreciable for very large doses.
[edit] Ion channelling
If there is a crystallographic structure to the target, and especially in semiconductor substrates where the crystal structure is more open, particular crystallographic directions offer much lower stopping than other directions. The result is that the range of an ion can be much longer if the ion travels exactly along a particular direction, for example the <110> direction in silicon and other diamond cubic materials. This effect is called ion channelling, and, like all the channelling effects, is highly nonlinear, with small variations from perfect orientation resulting in extreme differences in implantation depth. For this reason, most implantation is carried out a few degrees off-axis, where tiny alignment errors will have more predictable effects. There is no relation between this effect and ion channel of a cell membrane.
Ion channelling can be used directly in Rutherford backscattering and related techniques as an analytical method to determine the amount and depth profile of damage in crystalline thin film materials.
[edit] Hazardous materials note
In the ion implantation semiconductor fabrication process of wafers, it is important for the workers to minimize their exposure to the toxic materials used in the ion implanter process. Such hazardous elements, solid source and gasses are used, such as Arsine and Phosphine. For this reason, the semiconductor fabrication facilities are highly automated, and may feature negative pressure gas bottles safe delivery system (SDS). Other elements may include Antimony, Arsenic, Phosphorus, and Boron. Residue of these elements show up when the machine is opened to atmosphere, and can also be accumulated and found concentrated in the vacuum pumps hardware. It is important not to expose yourself to these Carcinogenic , corrosive , flammable , and toxic elements. Many overlapping safety protocols must be used when handling these deadly compounds. Use safety, and do read MSDS's.
[edit] High Voltage safety
There is also potential for electrocution, death by electric shock, in the Ion source area, and steering magnet and focusing lens power supplies. Make sure all high voltage potentials hazards are off, and discharged. Proper grounding rods must be attached while work is being performed within the tool.
[edit] Manufacturers of Ion Implantation Equipment
- AIBT (Advanced Ion Beam Technology)
- Applied Materials
- Axcelis Technologies
- Nissin Ion Equipment (Japanese)
- SEN Corporation, an SHI and Axcelis Company
- Ulvac
- Varian Semiconductor
- SemEquip