Inverse trigonometric function
From Wikipedia, the free encyclopedia
In mathematics, the inverse trigonometric functions are a set of relationships closely related to the trigonometric functions. The principal inverses are listed in the following table.
Name | Usual notation | Definition | Range of x for real result | Range of usual principal value |
---|---|---|---|---|
arcsine | y = arcsin(x) | x = sin(y) | −1 to +1 | −π/2 ≤ y ≤ π/2 |
arccosine | y = arccos(x) | x = cos(y) | −1 to +1 | 0 ≤ y ≤ π |
arctangent | y = arctan(x) | x = tan(y) | all | −π/2 < y < π/2 |
arccotangent | y = arccot(x) | x = cot(y) | all | 0 < y < π |
arcsecant | y = arcsec(x) | x = sec(y) | −∞ to −1 or 1 to ∞ | π/2 < y ≤ π or 0 ≤ y < π/2 |
arccosecant | y = arccsc(x) | x = cosec(y) | −∞ to −1 or 1 to ∞ | −π/2 ≤ y < 0 or 0 < y ≤ π/2 |
The notations sin−1, cos−1, etc are often used for arcsin, arccos, etc, but this notation sometimes causes confusion between (e.g.) arcsin(x) and 1/sin(x).
In computer programming languages the functions arcsin, arccos, arctan, are usually called asin, acos, atan. Many programming languages also provide the two-argument atan2 function, which computes the arctangent of y/x given y and x, but with a range of [−π, π].
[edit] Relationships among the inverse trigonometric functions
Reciprocal arguments:
- if
- if
Complementary angles:
Negative arguments:
If you only have a fragment of a sine table:
- if
From the half-angle formula , we get:
- if
[edit] Derivatives of inverse trigonometric functions
Simple derivatives for real values of x are as follows:
For an example derivation, letting , we get:
[edit] Expression as definite integrals
Integrating the derivative and fixing the value at one point gives an expression for the inverse trigonometric function as a definite integral:
When x equals 1, the integrals with limited domains are improper integrals, but still well-defined.
[edit] Infinite series
Like the sine and cosine functions, the inverse trigonometric functions can be calculated using infinite series, as follows:
Leonhard Euler found a more efficient series for the arctangent, which is:
[edit] Continued fraction for arctangent
A faster alternative to the power series for arctangent is its generalized continued fraction:
This is valid in the cut complex plane. There are two cuts, from −i to the point at infinity, going down the imaginary axis, and from i to the point at infinity, going up the same axis. It works best for real numbers running from -1 to 1. The partial denominators are the odd natural numbers, and the partial numerators (after the first) are just (nz)2, with each perfect square appearing once. It was developed by Carl Friedrich Gauss, utilizing the hypergeometric series.
[edit] Indefinite integrals of inverse trigonometric functions
These are all easily derived using integration by parts and the simple derivative forms shown above.
[edit] Recommended method of calculation
To calculate arcsine, use:
To calculate arccosine, use:
To calculate arctangent for x near zero, use the continued fraction above. To calculate arctangent for other values of x, use:
To calculate arccotangent, use:
To calculate arcsecant, use:
To calculate arccosecant, use:
[edit] Two argument variant of arctangent
Many computer programming languages also provide the two-argument atan2 function, which computes the arctangent of y/x given y and x, but with a range of [−π, π]. This function may be computed using the half-angle formula as follows:
provided that either x>0 or y≠0.
[edit] Logarithmic forms
These functions may also be expressed using natural logarithms. This extends in a natural fashion their domain to the whole of the complex plane.
Elementary proofs of these relations proceed via expansion to exponential forms of the trigonometric functions.
[edit] Example proof
- (exponential definition of sine)
Let
Then
- (solve for k)
- (the positive branch is chosen)
- Q.E.D.
[edit] See also
- Trigonometric function
- Tangent half-angle formula
- List of trigonometric identities
- Complex logarithm
- Square root
[edit] External links
- Weisstein, Eric W., Inverse Trigonometric Functions at MathWorld.