User:Inositle

From Wikipedia, the free encyclopedia

--

F_c = \frac{mv^2}{r}

A_c = \frac{v^2}{r}

G_F = \frac{G \times M_1 \times M_2}{r^2}

G_a = \frac{G \times M_1}{r^2}


Work = ΔKE + ΔUg + ΔWf

F \times \Delta x \times \cos \theta = \frac{1}{2}mv^2 + mg \Delta h + \mu F_n \cos \theta \Delta x

\Delta KE = \frac{1}{2} mv^2

ΔUg = mgΔh

Wf = μmgsinθ

U0 + KE0 = U1 + KE1 + Wf

U_G = - \frac {GM_em}{r}

P = \frac {W}{t}

Work = Joules = Nm = \frac {kgm^2}{s^2}

Power = Watts = \frac {Nm}{s} = \frac {kgm^2}{s^3}


sin2x + cos2x = 1

f(x) = f(a) \times f(b) \Longrightarrow f'(x) = [f'(a) \times f(b)] + [f'(a) \times f(b)]

f'(x) = [f'(a) \times f(b)] + [f'(b) \times f(a)]

1hp = 745.70Watts

a_1 = a_0 - \frac {f(a_0)}{f'(a_0)}


Work = Change in Kinetic Energy + Change in Potential Energy + Work of Friction

F(displacement)(change in inclination) = (1/2mv^2) + (mg)(change in height) + (mu)(Force Normal)(cosine theta)(displacement)

Change in Kinetic Energy = (1/2)mv^2

Change in Potential Energy = mg(change in height)

Work of Friction = (mu)(mg)(sin theta)

PE(0) + KE(0) = PE(1) + KE(1) + W(f)

Absolute Gravitational Potential Energy = F(G) = -(GM(e)m(2))/r

Power = Work / Time