Inlet cone

From Wikipedia, the free encyclopedia

Inlet cone of MiG-21MF
Enlarge
Inlet cone of MiG-21MF

Inlet cones (sometimes called shock cones) are a component of some supersonic aircraft. They are primarily used on ramjets, such as the turboramjets of the SR-71 or the pure ramjets of the D-21 Tagboard and Lockheed X-7. More examples of inlet cones can be found on the Su-7 Fitter and the MiG-21 Fishbed, both of which use conventional jet engines.

Contents

[edit] Purpose

The main purpose of an inlet cone is to slow down the flow of air from supersonic flight speed to a subsonic speed, before it enters the engine. Most jet engines need subsonic airflow to operate properly, and require a diffuser to prevent supersonic airflow inside the engine. At supersonic flight speeds a conical shock wave, sloping rearwards, forms at the apex of the cone. Air passing through the conical shock wave (and subsequent reflections) slows down to a low supersonic speed. The air then passes through a strong normal shock wave, within the diffuser passage, and exits at a subsonic velocity. The resulting intake system is more efficient (in terms of pressure recovery) than the much simpler pitot intake.

[edit] Shape

The inlet cone is shaped so that the shock wave that forms on its apex is directed to the lip of the intake; this allows the engine to operate properly in supersonic flight. As speed increases, the shock wave becomes increasingly more oblique. As a result, some inlet cones are designed to move axially to maintain the shock-on-lip and allow efficient operation over a wider range of flight speeds.

[edit] Operation

At subsonic flight speeds, the conical inlet operates much like pitot intake. However, as the vehicle goes supersonic a conical shock wave appears, emanating from the cone apex. Conical (and oblique) shock waves are akin to the bow wave on a ship. As the flight Mach number increases, the conical shock wave becomes more oblique and eventually impinges on the intake lip.

With increasing mach number the cone is not moved out of the inlet as it would make sense for the external compression, but inwards, because the cone sits in the cowl like a plug: By moving it inwards the path between the cone and the inlet narrows as it is needed for higher speed. The compression occurring in this path is called "internal compression" (opposed to the "external compression" on the cone) and can be subject to stall.

Care must be taken to prevent the normal shock wave, which lies behind the throat of the diffuser, coming forward through the throat, replacing the oblique shocks and reducing stagnation pressure and leading to excessive inlet temperatures burning the compressor.

  • The cone is moved in and out of the pitot intake controlled by a computer with temperature and pressure sensors in the intake to match the throat to the mach number.
  • With a ramjet, this occurs if excessive fuel is injected into the combustor, raising internal pressure too far. However, with a turbojet or turbofan, the problem arises when the engine is throttled back, causing a mismatch between intake airflow and engine mass flow. A trapdoor is needed to dump excess flow overboard. Or a variable geometry for the stators of the fan is used.

To restore the engine after a surge the computer has to change inlet, tubine and nozzle geometry, fuel injection and counteract the yaw on a two engine airplane, by means of control surfaces and throttling back the second engine.

The boundary layer on the cone is strechted as it moves up the cone preventing separation, but for the internal compression and the subsonic compression the bondary layer still tends to separete and usually is sucked through tiny holes in the wall. As a side note on the aerospike engine the bondary layer gets thicker towards the end of the cone as needed for the greater speed difference between the air molekules just on the surface of the cone and the fully accelerated stream of air.

[edit] Alternative Shapes

Some air inlets feature a biconic centrebody to form two conic shock waves, both focused on the lip of the intake. This improves pressure recovery. Some aircraft (Joint Strike Fighter, Mirage III) use a semi-conic centrebody.

Concorde, F-15, Foxbat, A-5 Vigilante use so-called 2D inlets, where the nacelle is rectangular and a flat inlet ramp replaces the dual cones just described. These allow good pressure recovery without spillover through the full range of speeds by matching their angle to the mach angle, but have problems with seals at high speed that is high pressure and temperature (like in a diesel engine). Inlet ramps allow for swept inlet cowls (F-22 Raptor, Joint Strike Fighter) to avoid shocks. They are sealed by viton or a metal sheet bend in direction of the higher pressure. At least one supersonic and one subsonic ramp is used, but for improved seal multiple supersonic ramps can be used. The boundary layer (something which the subsonic pitote inlet avoids by external compression) tends to separate and the smaller boundary layer of the ramp inlet is an advantage compared to the inlet cone. To avoid separation vortex generators are used, which mix the boundary layer with the free flow (or the boundary layer is sucked away through a porous surface, leading to drag). After the fan the hot slow intermixed air is passed by the engine, while the fast cold air is delivered to the engine.

After the engine the comparatively cold by passed air is used as an isolation between the engine exhaust and the walls. Again two ramps can be used to form a variable supersonic nozzle. Often a mirror-symmetric set-up is used with ramps on top and on the bottom.

There is one possibility for a stable, shockless supersonic to subsonic transition. This is used in transonic wings and would ultimately mean to send the air into a looping, forming a vortex: Then the final shock to subsonic speed is oblique with the subsonic region moving from the outside of the vortex to the inside.

Many supersonic aircraft (Eurofighter Typhoon,F-16) dispense with the conical centrebody and employ a simple pitot intake. A detached, strong, normal shock appears directly in front of inlet at supersonic flight speeds, which leads to a poor pressure recovery.

Also NASA adds a gap through the whole compressor. Supersonic flow jumps over it by means of ramps, while subsonic flow is able to turn and exit through the gap. In this way a stall is easier to remove [1]. Also there are plans to measure the air in front of the inlet to detect turbolences and adjust the inlet just in time.

[edit] See also

[edit] Spillover

The exhaust of the engines is hotter than in subsonic jetliners and the must therefore be placed behind the wings. For small aeroplanes the inlet can placed into the nose, spillover is acceptable because the nose generates a bow shock anyway. For larger aeroplanes the engines are placed at the trailing edge of the wings and the inlet is not allowed to generate shocks. Therefore it needs swept inlet lips and submerged inlet ramps. This increases friction and reduce stagnation pressure as does the following: No inlet behind the front wheel is allowed so two inlets in the wings are used.

[edit] Ramjet

As the compression of the inlet raises with speed the compression of the first compressor stage is reduced accordingly. The afterburner behind a turbine runs with a stoichiometric mixture like a ramjet but at higher pressure and thus more efficiency than a pure ramjet. It is claimed that an inlet at Mach 3.5 produces the same compression (44:1 [2]) as the whole compressor of a jet engine at zero speed, so the turbine should be bypassed then.

[edit] References

  • Eden, P. & Moeng, S. (2002). Modern Military Aircraft Anatomy. Aerospace Publishing Ltd. ISBN 1-58663-684-7.
  • Scott, J. (May 9, 2004) Turboramjet. Retrieved Nov. 19, 2004.
In other languages