Hyperaccumulators table – 3
From Wikipedia, the free encyclopedia
This section covers radionuclides, hydrocarbures and organic solvents, and informations on the plants used for their remediation.
Links to the other sections:
- Click here for Hyperaccumulators table – 1 : Al, Ag, As, Be, Cr, Cu, Mn, Hg, Mo, Naphtalene, Pb, Pd, Pt, Se, Zn
- Click here for Hyperaccumulators table – 2 : Nickel
[edit] Hyperaccumulators table – 3
Contaminant | Accumulation rates (in mg/g of dry weight) | Latin name | English name | H-Hyperaccumulator or A-Accumulator P-Precipitator T-Tolerant | Notes | Sources |
---|---|---|---|---|---|---|
Cd-Cadmium | xxx | Athyrium yokoscense | (Japanese false spleenwort?) | Cd(A), Cu(H), Pb(H), Zn(H) | Origin Japan | [1] |
Cd-Cadmium | >100 | Avena strigosa Schreb. | New-Oat | xxx | xxx | [2] |
Cd-Cadmium | H- | Bacopa monnieri | Smooth Water Hyssop | Cr(H), Cu(H), Hg(A), Pb(A) | Origin India; aquatic emergent species | [1],[3] |
Cd-Cadmium | xxx | Brassicaeae | Cabbage family | Hyperaccumulators: Cd, Cs, Ni, Sr, Zn | Phytoextraction | [4] |
Cd-Cadmium | A- | Brassica juncea L. | Indian mustard | Cr(A), Cu(H), Ni(H), Pb(H), Pb(P), Ur(A), Zn(H) | cultivated | [1],[4],[5] |
Cd-Cadmium | H- | Callisneria Americana | Tape Grass | Cr(A), Cu(H), Pb(H) | Origins Europe and N. Africa; extensively cultivated in the aquarium trade | [1] |
Cd-Cadmium | >100 | Crotalaria juncea | xxx | xxx | High amounts of total soluble phenolics | [2] |
Cd-Cadmium | H- | Eichhornia crassipes | Water Hyacinth | Cr(A), Cu(A), Hg(H), Pb(H), Zn(A). Also Cs, Sr, U[6], and pesticides[7] | Pantropical/Subtropical, 'the troublesome weed' | [1] |
Cd-Cadmium | xxx | Helianthus annuus | Sunflower | xxx | Phytoextraction & rhizofiltration | [1],[4],[8] |
Cd-Cadmium | H- | Hydrilla verticallata | Hydrilla | Cr(A), Hg(H), Pb(H) | xxx | [1] |
Cd-Cadmium | H- | Lemna minor | Duckweed | Pb(H), Cu(H), Zn(A) | Native to North America and widespread | [1] |
Cd-Cadmium | T- | Pistia stratiotes | Water Lettuce | Cu(T), Hg(H), Cr(H) | Pantropical, Origin South U.S.A.; aquatic herb | [1] |
Cd-Cadmium | xxx | Salix viminalis L. | Common Osier, basket Willow | Ag, Cr, Hg, Se, Petroleum hydrocarbures, Organic solvents, MTBE, TCE and by-products[4]; Pb, U, Zn (S. viminalix)[8]; Potassium ferrocyanide (S. babylonica L.)[9] | Phytoextraction. Perchlorate (wetland halophytes) | [8] |
Cd-Cadmium | xxx | Spirodela polyrhiza | Giant Duckweed | Cr(H), Pb(H), Ni(H), Zn(A) | Native to North America | [1],[10],[11] |
Cd-Cadmium | >100 | Tagetes erecta L. | African-tall | xxx | Tolerance only. Lipid peroxidation level increases; activities of antioxidative enzymes such as superoxide dismutase, ascorbate peroxidase, glutathione reductase, and catalase are depressed. | [2] |
Cd-Cadmium | xxx | Thlaspi caerulescens | Alpine pennycress | Cr(A), Co(H), Cu(H), Mo, Ni(H), Pb(H), Zn(H) | Phytoextraction. Its rhizosphere's bacterial population is less dense than with Trifolium pratense but richer in specific metal-resistant bacteria[12]. | [1],[4],[10],[13],[14],[15],[16] |
Cd-Cadmium | 1000 | Vallisneria spiralis | Eel grass | xxx | 37 records of plants; origin India | [10],[17] |
Cs-137 (Cesium–137) | xxx | Acer Rubrum, Acer | Red maple, Sycamore maple | Pu-238, Sr-90 | Leaves: much less uptake in Larch and Sycamore maple than in Spruce[18]. | [6] |
Cs-137 (Cesium–137) | xxx | Agrostis plant communities | Agrostis spp. | xxx | Grass or Forb species capable of accumulating radionuclides | [6] |
Cs-137 (Cesium–137) | up to 3000 Bq kg-1[19] | Amaranthus retroflexus ( cv. Belozernii, aureus, Pt-95) | Redroot Amaranth | Hyperaccumulator: Cd, Cs, Ni, Sr, Zn [4]. | Phytoextraction. Can accumulate radionuclides, ammonium nitrate and ammonium chloride as chelating agents[6]. Maximum concentration is reached after 35 days of growth[19]. | xxx |
Cs-137 (Cesium–137) | xxx | Brassicaeae | xxx | Hyperaccumulators: Cd, Cs, Ni, Sr, Zn | Phytoextraction. Ammonium nitrate and ammonium chloride as chelating agents[6]. | [4] |
Cs-137 (Cesium–137) | xxx | Brassica juncea | Indian mustard | xxx | Contains 2 to 3 times more Cs137 in his roots than in the biomass above ground[19]. Ammonium nitrate and ammonium chloride as chelating agents. | [6] |
Cs-137 (Cesium–137) | xxx | Cerastium fontanum | Big Chickweed | xxx | Grass or Forb species capable of accumulating radionuclides | [6] |
Cs-137 (Cesium–137) | xxx | Chenopodiaceae | Beet, Quinoa, Russian thistle | Sr-90, Cs-137 | Grass or Forb species capable of accumulating radionuclides | [6] |
Cs-137 (Cesium–137) | xxx | Cocos nucifera | Coconut palm | xxx | Tree able to accumulate radionuclides | [6] |
Cs-137 (Cesium–137) | xxx | Eichhornia crassipes | Hyacinth | U, Sr (high % uptake within a few days[6]). Also Cd(H), Cr(A), Cu(A), Hg(H), Pb, Zn(A)[1], and pesticides[7]. | xxx | [6] |
Cs-137 (Cesium–137) | xxx | Eragrostis bahiensis | Bahia lovegrass | xxx | Glomus mosseae as amendment. It increases the surface area of the plant roots, allowing roots to acquire more nutrients, water and therefore more available radionuclides in soil solution. | [6] |
Cs-137 (Cesium–137) | xxx | Eucalyptus tereticornis | Forest redgum | Sr-90 | Tree able to accumulate radionuclides | [6] |
Cs-137 (Cesium–137) | xxx | Festuca arundinacea | Tall Fescue | xxx | Grass or Forb species capable of accumulating radionuclides | [6] |
Cs-137 (Cesium–137) | xxx | Festuca rubra | Fescue | xxx | Grass or Forb species capable of accumulating radionuclides | [6] |
Cs-137 (Cesium–137) | xxx | Glomus mosseae as chelating agent | Mycorrhizal fungi | xxx | Glomus mosseae as amendment. It increases the surface area of the plant roots, allowing roots to acquire more nutrients, water and therefore more available radionuclides in soil solution. | [6] |
Cs-137 (Cesium–137) | xxx | Glomus intradices | Mycorrhizal fungi | xxx | Glomus mosseae as chelating agent. It increases the surface area of the plant roots, allowing roots to acquire more nutrients, water and therefore more available radionuclides in soil solution. | [6] |
Cs-137 (Cesium–137) | 4900-8600[20] | Helianthus annuus | Sunflower | U, Sr (high % uptake within a few days[6]) | Accumulates up to 8 times more Cs137 than timothy or foxtail. Contains 2 to 3 times more Cs137 in his roots than in the biomass above ground[19]. | [1],[6],[10] |
Cs-137 (Cesium–137) | xxx | Larix | Larch | xxx | Leaves: much less uptake in Larch and Sycamore maple than in Spruce. 20% of the translocated cesium into new leaves resulted from root-uptake 2.5 years after the Chernobyl accident[18]. | xxx |
Cs-137 (Cesium–137) | xxx | Liquidambar stryaciflua | American Sweet Gum | Pu-238, Sr-90 | Tree able to accumulate radionuclides | [6] |
Cs-137 (Cesium–137) | xxx | Liriodendron tulipfera | Tulip tree | Pu-238, Sr-90 | Tree able to accumulate radionuclides | [6] |
Cs-137 (Cesium–137) | xxx | Lolium multiflorum | Italian Ray-grass | Sr | Mycorhizae: accumulates much more cesium-137 and strontium-90 when grown in Sphagnum peat than in any other medium incl. Clay, sand, silt and compost[21]. | [6] |
Cs-137 (Cesium–137) | xxx | Lolium perenne | Perennial ryegrass | xxx | Can accumulate radionuclides | [6] |
Cs-137 (Cesium–137) | xxx | Panicum virgatum | Switchgrass | xxx | xxx | [6] |
Cs-137 (Cesium–137) | xxx | Phaseolus acutifolius | Tepary Beans | Hyperaccumulator: Cd, Cs, Ni, Sr, Zn [4]. | Phytoextraction. Ammonium nitrate and ammonium chloride as chelating agents[6]. | xxx |
Cs-137 (Cesium–137) | xxx | Phalaris arundinacea L. | Reed Canarygrass | Hyperaccumulator: Cd, Cs, Ni, Sr, Zn [4]. Ammonium nitrate and ammonium chloride as chelating agents[6]. | Phytoextraction | xxx |
Cs-137 (Cesium–137) | xxx | Picea abies | Spruce | xxx | Conc. about 25-times higher in bark compared to wood, 1.5–4.7 times higher in directly contaminated twig-axes than in leaves[18]. | xxx |
Cs-137 (Cesium–137) | xxx | Pinus radiata, Pinus ponderosa | Monterey Pine, Ponderosa pine | Sr-90. Also Petroleum hydrocarbures, Organic solvents, MTBE, TCE-trichloroethylene and by-products (Pinus spp.[4] | Phytocontainment. Tree able to accumulate radionuclides. | [6] |
Cs-137 (Cesium–137) | xxx | Sorghum halepense | Johnson Grass | xxx | xxx | [6] |
Cs-137 (Cesium–137) | xxx | Trifolium repens | White Clover | xxx | Grass or Forb species capable of accumulating radionuclides | [6] |
Cs-137 (Cesium–137) | H | Zea mays | Corn | xxx | High absorption rate. Accumulates radionuclides[16]. Contains 2 to 3 times more Cs137 in his roots than in the biomass above ground[19]. | [1],[10],[6] |
Co-Cobalt | 1000 to 4304[22] | Haumaniustrum robertii | xxx | xxx | 27 records of plants; origin Africa. Vernacular name: 'copper flower'. This species' phanerogamme has the highest cobalt content. Its distribution could be gouverned by cobalt rather than copper.[22] | [10],[14] |
Co-Cobalt | H- | Thlaspi caerulescens | Alpine pennycress]] | Cd(H), Cr(A), Cu(H), Mo, Ni(H), Pb(H), Zn(H) | Phytoextraction | [1],[4],[10],[12],[13],[14],[15] |
Pu-238 | xxx | Acer Rubrum | Red maple | Cs-137, Sr-90 | Tree able to accumulate radionuclides | [6] |
Pu-238 | xxx | Liquidambar stryaciflua | American Sweet Gum | Cs-137 Sr-90 | Tree able to accumulate radionuclides | [6] |
Pu-238 | xxx | Liriodendron tulipfera | Tulip tree | Cs-137, Sr-90 | Tree able to accumulate radionuclides | [6] |
Ra-Radium | xxx | xxx | xxx | xxx | No reports found for accumulation | [10] |
Sr-Strontium | xxx | Acer Rubrum | Red maple | Cs-137, Pu-238 | Tree able to accumulate radionuclides | [6] |
Sr-Strontium | xxx | Brassicaeae | xxx | Hyperaccumulators: Cd, Cs, Ni, Zn | Phytoextraction | [4] |
Sr-Strontium | xxx | Chenopodiaceae | Beet, Quinoa, Russian thistle | Sr-90, Cs-137 | Can accumulate radionuclides. | [6] |
Sr-Strontium | xxx | Eichhornia crassipes | Water Hyacinth | Cs-137, U-234, 235, 238. Also Cd(H), Cr(A), Cu(A), Hg(H), Pb, Zn(A)[1], and pesticides[7]. | In pH of 9, accumulates high concentrations of Sr90 with apprx. 80 to 90% of it in its roots[20]. | [6] |
Sr-Strontium | xxx | Eucalyptus tereticornis | Forest redgum | Cs-137 | Tree able to accumulate radionuclides | [6] |
Sr-Strontium | H-? | Helianthus annuus | Sunflower | xxx | Accumulates radionuclides[16]; high absorption rate. Phytoextraction & rhizofiltration | [1],[4],[10],[6] |
Sr-Strontium | xxx | Liquidambar stryaciflua | American Sweet Gum | Cs-137, Pu-238 | Tree able to accumulate radionuclides | [6] |
Sr-Strontium | xxx | Liriodendron tulipfera | Tulip tree | Cs-137, Pu-238 | Tree able to accumulate radionuclides | [6] |
Sr-Strontium | xxx | Lolium multiflorum | Italian Ray-grass | Cs | Mycorhizae: accumulates much more cesium-137 and strontium-90 when grown in Sphagnum peat than in any other medium incl. clay, sand, silt and compost[21]. | [6] |
Sr-Strontium | 1.5-4.5 % in their shoots | Pinus radiata, Pinus ponderosa | Monterey Pine, Ponderosa pine | Petroleum hydrocarbures, Organic solvents, MTBE, TCE-trichloroethylene and by-products[4]; Cs-137 | Phytocontainment. Accumulate 1.5-4.5 % of Sr-90 in their shoots[20]. | [6] |
Sr-Strontium | xxx | Umbelliferae | xxx | xxx | Species most capable of accumulating radionuclides | [6] |
Sr-Strontium | xxx | Legume family | xxx | xxx | Species most capable of accumulating radionuclides | [6] |
U-Uranium | xxx | Amaranthus | Amaranth | Cd(A), Cr(A), Cu(H), Ni(H), Pb(H), Pb(P), Zn(H) | Citric acid chelating agent [8], and see note. Cs: maximum concentration is reached after 35 days of growth[19]. | [1],[6] |
U-Uranium | xxx | Brassica juncea, Brassica chinensis, Brassica narinosa | Cabbage family | Cd(A), Cr(A), Cu(H), Ni(H), Pb(H), Pb(P), Zn(H) | Citric acid chelating agent increases uptake 1000 times[23],[8], and see note | [1],[4],[6] |
U-234, 235, 238 | xxx | Eichhornia crassipes | Water Hyacinth | Cs-137, Sr-90. Also Cd(H), Cr(A), Cu(A), Hg(H), Pb, Zn(A)[1], and pesticides[7]. | xxx | [6] |
U-Uranium 234, 235, 238 | 95% of U in 24 hours[19]. | Helianthus annuus | Sunflower | xxx | Accumulates radionuclides[16]; At a contaminated wastewater site in Ashtabula, Ohio, 4 wk-old splants can remove more than 95% of uranium in 24 hours[19]. Phytoextraction & rhizofiltration. | [1],[4],[10],[6],[8] |
U-Uranium | xxx | Juniperus | Juniper | xxx | Accumulates (radionuclides) U in his roots[20] | [6] |
U-Uranium | xxx | Picea mariana | Black Spruce | xxx | Accumulates (radionuclides) U in his twigs[20] | [6] |
U-Uranium | xxx | Quercus | Oak | xxx | Accumulates (radionuclides) U in his roots[20] | [6] |
U-Uranium | xxx | xxx | Russian Thistle (tumble weed) | xxx | xxx | ?? |
U-Uranium | xxx | Salix viminalis | Common Osier | Ag, Cr, Hg, Se, Petroleum hydrocarbures, Organic solvents, MTBE, TCE and by-products[4]; Cd, Pb, Zn (S. viminalis)[8]; Potassium ferrocyanide (S. babylonica L.)[9] | Phytoextraction. Perchlorate (wetland halophytes) | [8] |
U-Uranium | xxx | Silence eucapalis | Bladder campion | xxx | xxx | ?? |
U-Uranium | xxx | Zea Mays | Sweet Corn | xxx | xxx | ?? |
U-Uranium | A-? | xxx | xxx | xxx | xxx | [10] |
Radionuclides | xxx | Tradescantia bracteata | Spiderworts | xxx | Indicator for radionuclides: the stamens (normally blue or blue-purple) become pink when exposed to radionuclides | [6] |
Benzene | xxx | Chlorophytum comosum | xxx | xxx | xxx | [24] |
Benzene | xxx | Ficus elastica | xxx | xxx | xxx | [24] |
Benzene | xxx | Kalanchoe blossfeldiana | xxx | xxx | seems to take benzene selectively over toluene. | [24] |
Benzene | xxx | Pelargonium domesticum | xxx | xxx | xxx | [24] |
BTEX | xxx | Phanerochaete chrysosporium | White rot fungus | DDT, Dieldrin, Endodulfan, Pentachloronitro-benzene, PCP | Phytostimulation | [4] |
DDT | xxx | Phanerochaete chrysosporium | White rot fungus | BTEX, Dieldrin, Endodulfan, Pentachloronitro-benzene, PCP | Phytostimulation | [4] |
Dieldrin | xxx | Phanerochaete chrysosporium | White rot fungus | DDT, BTEX, Endodulfan, Pentachloronitro-benzene, PCP | Phytostimulation | [4] |
Endodulfan | xxx | Phanerochaete chrysosporium | White rot fungus | DDT, BTEX, Dieldrin, PCP, Pentachloronitro-benzène | Phytostimulation | [4] |
Fluoranthene | xxx | Cyclotella caspia | xxx | xxx | Approximate rate of biodegradation on 1st day: 35%; on 6th day: 85% (rate of physical degradation 5.86% only). | [25] |
Hydrocarbures | xxx | Cynodon dactylon (L.) Pers. | bermuda grass | xxx | Mean petroleum hydrocarbures reduction of 68% after 1 year | [8] |
Hydrocarbures | xxx | Festuca arundinacea | Tall fescue | xxx | Mean petroleum hydrocarbures reduction of 62% after 1 year[8] | [26] |
Hydrocarbures | xxx | Pinus spp. | Pine spp. | Organic solvents, MTBE, TCE-trichloroethylene and by-products[4]. Also Cs-137, Sr-90[6] | Phytocontainment. Tree able to accumulate radionuclides (P. ponderosa, P. radiata)[6] | [4] |
Hydrocarbures | xxx | Salix Spp. | Osier spp. | Ag, Cr, Hg, Se, Organic solvents, MTBE, TCE and by-products[4]; Cd, Pb, U, Zn (S. viminalis)[8]; Potassium ferrocyanide (S. babylonica L.)[9] | Phytoextraction. Perchlorate (wetland halophytes) | [4] |
MTBE | xxx | Pinus spp. | Pine spp. | Petroleum hydrocarbures, Organic solvents, TCE-trichloroethylene and by-products[4]. Also Cs-137, Sr-90 (Pinus radiata, Pinus ponderosa)[6] | Phytocontainment. Tree able to accumulate radionuclides (P. ponderosa, P. radiata)[6] | [4] |
MTBE | xxx | Salix Spp. | Osier spp. | Ag, Cr, Hg, Se, Petroleum hydrocarbures, Organic solvents, TCE and by-products[4]; Cd, Pb, U, Zn (S. viminalis)[8]; Potassium ferrocyanide (S. babylonica L.)[9] | Phytoextraction, phytocontainment. Perchlorate (wetland halophytes) | [4] |
Organic solvents | xxx | Pinus spp. | Pine spp. | Petroleum hydrocarbures MTBE, TCE-trichloroethylene and by-products[4]. Also Cs-137, Sr-90 (Pinus radiata, Pinus ponderosa)[6] | Phytocontainment. Tree able to accumulate radionuclides (P. ponderosa, P. radiata)[6] | [4] |
Organic solvents | xxx | Salix Spp. | Osier spp. | Ag, Cr, Hg, Se, Petroleum hydrocarbures, MTBE, TCE and by-products[4]; Cd, Pb, U, Zn (S. viminalis)[8]; Potassium ferrocyanide (S. babylonica L.)[9] | Phytoextraction. phytocontainment . Perchlorate (wetland halophytes) | [4] |
Organic solvents | xxx | Pinus spp. | Pine spp. | Petroleum hydrocarbures MTBE, TCE-trichloroethylene and by-products[4]. Also Cs-137, Sr-90 (Pinus radiata, Pinus ponderosa)[6] | Phytocontainment. Tree able to accumulate radionuclides (P. ponderosa, P. radiata)[6] | [4] |
Organic solvents | xxx | Salix Spp. | Osier spp. | Ag, Cr, Hg, Se, Petroleum hydrocarbures, MTBE, TCE and by-products[4]; Cd, Pb, U, Zn (S. viminalis)[8]; Potassium ferrocyanide (S. babylonica L.)[9] | Phytoextraction. phytocontainment . Perchlorate (wetland halophytes) | [4] |
Pentachloronitro-benzene | xxx | Phanerochaete chrysosporium | White rot fungus | DDT, BTEX, Dieldrin, Endodulfan, PCP | Phytostimulation | [4] |
Potassium ferrocyanide | 8.64% to 15.67% of initial mass | S. babylonica L. | Weeping Willow | Ag, Cr, Hg, Se, Petroleum hydrocarbures, Organic solvents, MTBE, TCE and by-products (Salix spp.)[4]; Cd, Pb, U, Zn (S. viminalis)[8]; Potassium ferrocyanide (S. babylonica L.)[9] | Phytoextraction. Perchlorate (wetland halophytes). No ferrocyanide in air from plant transpiration. A large fraction of initial mass was metabolized during transport within the plant[9]. | [9] |
Potassium ferrocyanide | 8.64% to 15.67% of initial mass | Salix matsudana Koidz, Salix matsudana Koidz x Salix alba L. | Hankow Willow, Hybrid Willow | Ag, Cr, Hg, Se, Petroleum hydrocarbures, Organic solvents, MTBE, TCE and by-products (Salix spp.)[4]; Cd, Pb, U, Zn (S. viminalis)[8]. | No ferrocyanide in air from plant transpiration. | [9] |
PCB | xxx | Rosa spp. | Paul’s Scarlet Rose | xxx | Phytodegradation | [4] |
PCP | xxx | Phanerochaete chrysosporium | White rot fungus | DDT, BTEX, Dieldrin, Endodulfan, Pentachloronitro-benzène | Phytostimulation | [4] |
TCE-trichloroethylene | xxx | Chlorophytum comosum | xxx | xxx | Seems to lower the removal rates of benzene and methane. | [24] |
TCE-trichloroethylene and by-products | xxx | Pinus | Pine spp. | Petroleum hydrocarbures, Organic solvents, MTBE[4]. Also Cs-137, Sr-90 (Pinus radiata, Pinus ponderosa)[6] | Phytocontainment. Tree able to accumulate radionuclides (P. ponderosa, P. radiata)[6] | [4] |
TCE-trichloroethylene and by-products | xxx | Salix Spp. | Osier spp. | Ag, Cr, Hg, Se, Petroleum hydrocarbures, Organic solvents, MTBE[4]; Cd, Pb, U, Zn (S. viminalis)[8]; Potassium ferrocyanide (S. babylonica L.)[9] | Phytoextraction, phytocontainment. Perchlorate (wetland halophytes) | [4] |
xxx | xxx | xxx | Banana tree | xxx | Extra-dense root system, good for rhizofiltration[27]. | xxx |
xxx | xxx | xxx | Papyrus | xxx | Extra-dense root system, good for rhizofiltration[27] | xxx |
xxx | xxx | xxx | Taros | xxx | Extra-dense root system, good for rhizofiltration[27] | xxx |
xxx | xxx | Brugmansia spp. | Angel's trumpet | xxx | Semi-anaerobic, good for rhizofiltration | [28] |
xxx | xxx | Caladium | Caladium | xxx | Semi-anaerobic and resistant, good for rhizofiltration[28] | xxx |
xxx | xxx | Caltha palustris | Marsh marigold | xxx | Semi-anaerobic and resistant, good for rhizofiltration[28] | xxx |
xxx | xxx | Iris pseudacorus | Yellow Flag, paleyellow iris | xxx | Semi-anaerobic and resistant, good for rhizofiltration[28] | xxx |
xxx | xxx | Mentha aquatica | Water Mint | xxx | Semi-anaerobic and resistant, good for rhizofiltration[28] | xxx |
xxx | xxx | Scirpus lacustris | Bulrush | xxx | Semi-anaerobic and resistant, good for rhizofiltration[28] | xxx |
xxx | xxx | Typha latifolia | Broadleaf cattail | xxx | Semi-anaerobic and resistant, good for rhizofiltration[28] | xxx |
Notes
- Uranium: The symbol for Uranium is sometimes given as Ur instead of U. According to Ulrich Schmidt[8] and others, plants' concentration of uranium is considerably increased by an application of citric acid, which solubilizes the Uranium (and other metals).
- Radionuclides: Cs-137 and Sr-90 are not removed from the top 0.4 meters of soil even under high rainfall, and migration rate from the top few centimeters of soil is slow[29].
- Radionuclides: Plants with mycorrhizal associations are often more effective than non-mycorrhizal plants at the uptake of radionuclides[30].
- Radionuclides: In general, soils containing higher amounts of organic matter will allow plants to accumulate higher amounts of radionuclides[29]. See also note on Lolium multiflorum in Paasikallio 1984[21]. Plant uptake is also increased with a higher cation exchange capacity for Sr-90 availability, and a lower base saturation for uptake of both Sr-90 and Cs-137[29].
- Radionuclides: Fertilizing the soil with nitrogen if needed will indirectly increase the take-up of radionuclides by generally boosting the plant's overall growth and more specifically roots' growth. But some fertilizers such as K or Ca compete with the radionuclides for cation exchange sites, and will not increase the take-up of radionuclides[29].
- Radionuclides: Zhu and Smolders, lab test[31]: Cs uptake is mostly influenced by K supply. The uptake of radiocesium depends mainly on two transport pathways on plant root cell membranes: the K+ transporter and the K+ channel pathway. Cs is likely transported by the K+ transport system. When external concentration of K is limited to low levels, le K+ transporter shows little discrimination against Cs+; if K supply is high, the K+ channel is dominant and shows high discrimination against Cs+. Cesium is very mobile within the plant, but the ratio Cs/K is not uniform within the plant. Phytoremediation as a possible option for the decontamination of cesium-contaminated soils is limited mainly by that it takes tens of years and creates large volumes of waste.
- Alpine pennycress or «Alpine Pennygrass» is found as «Alpine Pennycrest» in (some books).
- The references are so far mostly from academic trial papers, experiments and generally of exploration of that field.
- Radionuclides: Broadley and Willey[32] find that across 30 taxa studied, Gramineae and Chenopodiaceae show the strongest correlation between Rb (K) and Cs concentration. The fast growing Chenopodiaceae discriminate approx. 9 times less between Rb and Cs than the slow growingGramineae, and this correlate with highest and lowest concentrations achieved respectively.
- Cesium: In Chernobyl-derived radioactivity, the amount of contamination is dependent on the roughness of bark, absolute bark surface and the existence of leaves during the deposition. The major contamination of the shoots is from direct deposition on the trees[18].
Annotated References
- ^ a b c d e f g h i j k l m n o p q r s t u McCutcheon & Schnoor 2003, Phytoremediation. New Jersey, John Wiley & Sons pg 898
- ^ a b c [1] Shimpei Uraguchi, Izumi Watanabe, Akiko Yoshitomi, Masako Kiyono and Katsuji Kuno, Characteristics of cadmium accumulation and tolerance in novel Cd-accumulating crops, Avena strigosa and Crotalaria juncea. Journal of Experimental Botany 2006 57(12):2955-2965; doi:10.1093/jxb/erl056
- ^ Gurta et al. 1994
- ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at McCutcheon & Schnoor 2003, Phytoremediation. New Jersey, John Wiley & Sons pg 19
- ^ [2] Lindsay E. Bennetta, Jason L. Burkheada, Kerry L. Halea, Norman Terryb, Marinus Pilona and Elizabeth A. H. Pilon-Smits, Analysis of Transgenic Indian Mustard Plants for Phytoremediation of Metal-Contaminated Mine Tailings. Journal of Environmental Quality 32:432-440 (2003)
- ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az ba bb bc bd be bf bg bh bi bj [3] Phytoremediation of radionuclides.
- ^ a b c d [4] J.K. Lan. Recent developments of phytoremediation.
- ^ a b c d e f g h i j k l m n o p q r [5], Enhancing Phytoextraction: The Effect of Chemical Soil Manipulation on Mobility, Plant Accumulation, and Leaching of Heavy Metals, by Ulrich Schmidt.
- ^ a b c d e f g h i j k [6] Yu X.Z., Zhou P.H. and Yang Y.M., The potential for phytoremediation of iron cyanide complex by Willows.
- ^ a b c d e f g h i j k McCutcheon & Schnoor 2003, Phytoremediation. New Jersey, John Wiley & Sons pg 891
- ^ Srivastav 1994
- ^ a b [7] T.A. Delorme, J.V. Gagliardi, J.S. Angle, and R.L. Chaney. Influence of the zinc hyperaccumulator Thlaspi caerulescens J. & C. Presl. and the nonmetal accumulator Trifolium pratense L. on soil microbial populations. Conseil National de Recherches du Canada,
- ^ a b [8] Majeti Narasimha Vara Prasad, Nickelophilous plants and their significance in phytotechnologies. Braz. J. Plant Physiol. Vol.17 no.1 Londrina Jan./Mar. 2005
- ^ a b c Baker & Brooks, 1989
- ^ a b [9] E. Lombi, F.J. Zhao, S.J. Dunham et S.P. McGrath, Phytoremediation of Heavy Metal, Contaminated Soils, Natural Hyperaccumulation versus Chemically Enhanced Phytoextraction.
- ^ a b c d Phytoremediation Decision Tree, ITRC
- ^ Brown et al. 1995
- ^ a b c d [10], J. Ertel and H. Ziegler, Cs-134/137 contamination and root uptake of different forest trees before and after the Chernobyl accident, Radiation and Environmental Biophysics, june 1991, Vol. 30, nr. 2, pp. 147-157
- ^ a b c d e f g h Dushenkov, S., A. Mikheev, A. Prokhnevsky, M. Ruchko, and B. Sorochinsky, Phytoremediation of Radiocesium-Contaminated Soil in the Vicinity of Chernobyl, Ukraine. Environmental Science and Technology 1999. 33, no. 3 : 469-475. Cited in Phytoremediation of radionuclides.
- ^ a b c d e f Negri, C. M., and R. R. Hinchman, 2000. The use of plants for the treatment of radionuclides. Chapter 8 of Phytoremediation of toxic metals: Using plants to clean up the environment, ed. I. Raskin and B. D. Ensley. New York: Wiley-Interscience Publication. Cited in Phytoremediation of Radionuclides.
- ^ a b c A. Paasikallio, The effect of time on the availability of strontium-90 and cesium-137 to plants from Finnish soils. Annales Agriculturae Fenniae, 1984. 23: 109-120. Cited in Westhoff99.
- ^ a b [11] R. R. Brooks, Copper and cobalt uptake by Haumaniustrum species.
- ^ Huang, J. W., M. J. Blaylock, Y. Kapulnik, and B. D. Ensley, 1998. Phytoremediation of Uranium-Contaminated Soils: Role of Organic Acids in Triggering Uranium Hyperaccumulation in Plants. Environmental Science and Technology. 32, no. 13 : 2004-2008. Cited in Phytoremediation of radionuclides.
- ^ a b c d e [12] J.J.Cornejo, F.G.Muñoz, C.Y.Ma and A.J.Stewart, Studies on the decontamination of air by plants.
- ^ [13]. Yu Liu, Tian-Gang Luan, Ning-Ning Lu, Chong-Yu Lan, Toxicity of Fluoranthene and Its Biodegradation by Cyclotella caspia Alga. Journal of Integrative Plant Biology, Fev. 2006
- ^ [14] S.D. Siciliano, J.J. Germida, K. Banks and C. W. Greer. Changes in Microbial Community Composition and Function during a Polyaromatic Hydrocarbon Phytoremediation Field Trial. Applied and Environmental Microbiology, January 2003, p. 483-489, Vol. 69, No. 1
- ^ a b c [15] "Living Machines". Erik Alm describes them as 'freaks' because of their over-abundant root system even in such nutrient-rich environnements. This is a prime factor in treating wastewaters: more surface for adsorption / absorption, and finer filter for larger impurities
- ^ a b c d e f g [16], "Living Machines". These marsh plants can live in semi-anaerobic environments and are used in wastewater treating ponds
- ^ a b c d [17] J.A. Entry, N.C. Vance, M.A. Hamilton, D. Zabowski, L.S. Watrud, D.C. Adriano. Phytoremediation of soil contaminated with low concentrations of radionuclides. Water, Air, and Soil Pollution, 1996. 88: 167-176. Cited in Westhoff99.
- ^ J.A. Entry, P. T. Rygiewicz, W.H. Emmingham. Strontium-90 uptake by Pinus ponderosa and Pinus radiata seedlings inoculated with ectomycorrhizal fungi. Environmental Pollution 1994, 86: 201-206. Cited in Westhoff99.
- ^ [18] Y-G. Zhu and E. Smolders, Plant uptake of radiocaesium: a review of mechanisms, regulation and application. Journal of Experimental Botany, Vol. 51, No. 351, pp. 1635-1645, October 2000
- ^ [19] M.R. Broadley and N.J. Willey. Differences in root uptake of radiocaesium by 30 plant taxa. Environmental Pollution 1997, Volume 97, Issues 1-2, Pages 11-15
Links to the other sections: