Talk:History of special relativity

From Wikipedia, the free encyclopedia

WikiProject Physics This article is within the scope of WikiProject Physics, which collaborates on articles related to physics.
??? This article has not yet received a rating on the assessment scale. [FAQ]
??? This article has not yet received an importance rating within physics.

Please rate this article, and then leave comments here to explain the ratings and/or to identify the strengths and weaknesses of the article.

This article is part of the History of Science WikiProject, an attempt to improve and organize the history of science content on Wikipedia. If you would like to participate, you can edit the article attached to this page, or visit the project page, where you can join the project and/or contribute to the discussion. You can also help with the History of Science Collaboration of the Month.

Contents

[edit] Differences and similarities between Newtonian space and special relativity space-time.

(The following discussion is about the history of special relativity, but maybe it would be more fitting in an article about philosophy of relativity)

Newtonian dynamics and special relativity have themes in common, which does not come as a surprise because both theories address the very same questions.

The Principle of Relativity of inertial motion is one of the cornerstones of Newtonian dynamics. Special relativity marked a return to this principle, (but with Lorentz-transformations instead of Galilean transformations) after doubt had been cast on the principle of relativity of inertial motion by the apparent necessity to assume the existence of a luminiferous ether.

The principle of relativity of inertial motion also entails, as Newton had seen better than his contempories, a principle of relativity of inertia. In order to accelerate an object, a force must be exerted, and there there is no such thing as a difference between accelerating and decelerating, it is intrinsically only possible to measure change of velocity.

However, something must be the physical cause of inertia. There is an opposition to change of velocity, like a coil with selfinduction will oppose a change of current strength, while not resisting uniform current. The origin of inertia must be some physical interaction, opposing change of velocity while not interacting with uniform velocity. Therefore Newton had explicitly announced the assumption of absolute space, fully aware of the strangeness of the situation. Why would nature fine-tune everything to ensure that there is always relativity of inertial motion, while space is nonetheless absolute?

There was an aspect of special relativity that Einstein was very dissatisfied with. Even as he worked out special relativity he knew special relativity needed to be followed by a deeper theory. Just as in newtonian dynamics special relativity assumes an absolute background reference that is the cause of inertia. Minkowski space-time does not have absolute time and it does not have absolute space, but as a whole, als space-time, it is just as present and immutable as newtonian absolute space.

Mach's criticism of Newtonian absolute space was just as valid for special relativity as it was for Newtonian absolute space, and Einstein was quite aware of that. Mach had argued that what is seen everywhere in nature is that the laws of physics describe physical entities that act on other entities and that are being acted upon. But newtonian absolute space was immutable, it acts on matter, but it is not being acted upon. Likewise, Minkowski space-time acts on matter, as the physical cause of inertia, but is not being acted upon. It is this immutable, non-reciprocal character that is the focus of Mach's criticism.

Einstein saw special relativity as a transitional theory, it really had to be overthrown.
--Cleon Teunissen | Talk 19:02, 28 July 2005 (UTC)

I now saw the above, and I think it's quite OK although it may be supected of being OR, if no references are given. An alternative title would be Metaphysics of Relativity. And the presentaion can be next continued to the GRT in which physical space affects matter but is also affected by matter. Harald88 19:18, 29 October 2005 (UTC)

[edit] merged and reedited

I merged the History page with the version that was still on the Special relativity page, and reedited it plus made some additions. I some cases I had to make a choice between different renderings; some confusing/erroneous sentences I deleted as well as some non-relevant material that just didn't fit in. In case I stepped on a sore toe by deleting something, just reinsert any lost phrase that you may consider essential. Harald88 13:45, 29 October 2005 (UTC)


[edit] error?

I think in this text:

As the equations referred to propagation with respect to the hypothesised aether, physicists tried to use this idea to measure the speed of light with respect to the aether. It should say "speed of the Earth with respect to the aether".

Huh? Hmmm... You're dead right! No doubt about it. I correct it immediately. Harald88 19:04, 3 December 2005 (UTC)


[edit] The Role of Huygens

Um, I was wondering why there is no mention of Christiaan Huygens's role in discussing relative motion and invariants within Galilian/Newtonian space. If no one has any information on this subject, would you like me to supply it? Let me know. SJCstudent 19:20, 11 April 2006 (UTC)

Sounds interesting! Please add it first here with a reference. Harald88 12:45, 12 April 2006 (UTC)

[edit] Cleanup plez

Fact checking, neutralization, diction. ---CH 23:34, 13 June 2006 (UTC)

[edit] Sentence sense

My contribution to the discussion on need to edit the history page: the first sentence in the 2nd paragraph of the Criticisms of special relativity seems to need clarifying. soj

Done. Harald88 20:01, 20 June 2006 (UTC)

[edit] Galileo did not have Galilean transformation equations?

I think Galileo did not form the Galilean transformation equations; if he did what is the reference?; I think the equations were derived later based upon his physics by others. As to the issue of light speed he was trying to measure it and failed, if he had succeded he might have formed different equations than the so-called Galilean transformation equations.

86, you're right that we bneed a reference. I know that they are on the web; hopefully one of us will add it when he/she stumbles on it again. Harald88 20:32, 11 July 2006 (UTC)
The above editor apparently added the following phrase: to the article in-between the introduction to classical relativity and the discussion of it: The relativity issue was further taken up by the Kant-Boscovich theory.
As it didn't seem to fit there (and I don't know where it would fit), I park it here for discussion where to put it, if at all. Harald88 20:18, 11 July 2006 (UTC)