Hilbert's eighteenth problem

From Wikipedia, the free encyclopedia

Hilbert's eighteenth problem is one of the 23 Hilbert problems set out in a celebrated list compiled in 1900 by David Hilbert. It asks three separate questions.

Contents

[edit] Symmetry groups in n dimensions

The first part of the problem asks whether there are only finitely many essentially different space groups in n-dimensional Euclidean space. This was answered affirmatively by Bieberbach.

[edit] Anisohedral tiling in 3 dimensions

The second part of the problem asks whether there exists a polyhedron which tiles 3-dimensional Euclidean space but is not the fundamental region of any space group; that is, which tiles but does not admit an isohedral (tile-transitive) tiling. Such tiles are now known as anisohedral. In asking the problem in three dimensions, Hilbert had presumed that no such tile exists in the plane.

The first such tile in three dimensions was found by Reinhardt in 1928. The first example in two dimensions was found by Heesch in 1935.

[edit] Sphere packing

The third part of the problem asks for the densest sphere packing or packing of other specified shapes. Although it expressly includes shapes other than spheres, it is generally taken as equivalent to the Kepler conjecture.

[edit] References

Hilbert's problems
Hilbert's first problem | Hilbert's second problem | Hilbert's third problem | Hilbert's fourth problem | Hilbert's fifth problem | Hilbert's sixth problem | Hilbert's seventh problem | Hilbert's eighth problem | Hilbert's ninth problem | Hilbert's tenth problem | Hilbert's eleventh problem | Hilbert's twelfth problem | Hilbert's thirteenth problem | Hilbert's fourteenth problem | Hilbert's fifteenth problem| Hilbert's sixteenth problem | Hilbert's seventeenth problem | Hilbert's eighteenth problem | Hilbert's nineteenth problem | Hilbert's twentieth problem | Hilbert's twenty-first problem | Hilbert's twenty-second problem | Hilbert's twenty-third problem
In other languages