Generalised hyperbolic distribution

From Wikipedia, the free encyclopedia

generalised hyperbolic
Probability density function
Cumulative distribution function
Parameters μ location (real)
λ (real)
α (real)
β asymmetry parameter (real)
δ scale parameter (real)
\gamma = \sqrt{\alpha^2 - \beta^2}
Support x \in (-\infty; +\infty)\!
Probability density function (pdf) \frac{(\gamma/\delta)^\lambda}{\sqrt{2\pi}K_\lambda(\delta \gamma)} \; e^{\beta (x - \mu)} \!
\times \frac{K_{\lambda - 1/2}\left(\alpha \sqrt{\delta^2 + (x - \mu)^2}\right)}{\left(\sqrt{\delta^2 + (x - \mu)^2} / \alpha\right)^{1/2 - \lambda}} \!
Cumulative distribution function (cdf)
Mean \mu + \frac{\delta \beta K_{\lambda+1}(\delta \gamma)}{\gamma K_\lambda(\delta\gamma)}
Median
Mode
Variance \frac{\delta K_{\lambda+1}(\delta \gamma)}{\gamma K_\lambda(\delta\gamma)} + \frac{\beta^2\delta^2}{\gamma^2}\left( \frac{K_{\lambda+2}(\delta\gamma)}{K_{\lambda}(\delta\gamma)} -   \frac{K_{\lambda+1}^2(\delta\gamma)}{K_{\lambda}^2(\delta\gamma)} \right)
Skewness
Excess Kurtosis
Entropy
mgf \frac{e^{\mu z}\gamma^\lambda}{(\alpha^2 -(\beta +z)^2)^\lambda} \frac{K_\lambda(\delta (\alpha^2 -(\beta +z)^2))}{K_\lambda (\delta \gamma)}
Char. func.

The generalised hyperbolic distribution is a continuous probability distribution defined as the normal variance-mean mixture where the mixing distribution is the generalized inverse Gaussian distribution. Its probability density function (see the box) is given in terms of modified Bessel function of the third kind, denoted by Kλ.

As the name suggests it is of a very general form, being the superclass of, among others, the Student's t-distribution, the Laplace distribution, the hyperbolic distribution, the normal-inverse Gaussian distribution and the variance-gamma distribution.

Its main areas of application are those which require sufficient probability of far-field behaviour, which it can model due to its semi-heavy tails, a property that the normal distribution does not possess. The generalised hyperbolic distribution is well-used in economics, with particular application in the fields of modelling financial markets and risk management, due to its semi-heavy tails. This class is closed under linear operations. It was introduced by Ole Barndorff-Nielsen.

[edit] Related distributions

Image:Bvn-small.png Probability distributionsview  talk  edit ]
Univariate Multivariate
Discrete: BernoullibinomialBoltzmanncompound PoissondegenerateGauss-Kuzmingeometrichypergeometriclogarithmicnegative binomialparabolic fractalPoissonRademacherSkellamuniformYule-SimonzetaZipfZipf-Mandelbrot Ewensmultinomial
Continuous: BetaBeta primeCauchychi-squareDirac delta functionErlangexponentialexponential powerFfadingFisher's zFisher-TippettGammageneralized extreme valuegeneralized hyperbolicgeneralized inverse GaussianHalf-LogisticHotelling's T-squarehyperbolic secanthyper-exponentialhypoexponentialinverse chi-squareinverse gaussianinverse gammaKumaraswamyLandauLaplaceLévyLévy skew alpha-stablelogisticlog-normalMaxwell-BoltzmannMaxwell speednormal (Gaussian)ParetoPearsonpolarraised cosineRayleighrelativistic Breit-WignerRiceStudent's ttriangulartype-1 Gumbeltype-2 GumbeluniformVoigtvon MisesWeibullWigner semicircleWilks' lambda DirichletKentmatrix normalmultivariate normalvon Mises-FisherWigner quasiWishart
Miscellaneous: Cantorconditionalexponential familyinfinitely divisiblelocation-scale familymarginalmaximum entropyphase-typeposteriorpriorquasisamplingsingular