Talk:Fossil fuel power plant
From Wikipedia, the free encyclopedia
If you want to help, we could use some appropriate photos. There is plenty of opportunity for expansion. There could be a section on operator controls, and more detail on water treatment, and pollution control, for example. --Blainster 10:00, 2 Mar 2005 (UTC)
This is written from memory (personal experience) so checks on things like flow rates, pressures, and temperatures are particularly appreciated. --Blainster 00:00, 9 Mar 2005 (UTC)
Contents |
[edit] Water purity
It seems the industry standard unit is microsiemens per centimeter. A Google search turned up this reference [[1]] whose Table 1 says chemically pure water has a conductivity of 0.038 microsiemens per cm, and demineralized water up to 1.0 microsiemens per cm - which looks like the magnitude for boiler feedwater. Per metre would be 100 times smaller, which isn't possible. --Wtshymanski 19:22, 5 August 2005 (UTC)
[edit] Comparative Stack Gas volumes
This section compares flue gas volumes for different fuels, but does not state why this is of interest. An encylopedia needs to give context for the information presented, so that it will be useful to non-specialists. Much of the data in the table is not relevant to its accompanying statement. The image itself is problematic, consisting of a bright color graphic of a table of data. The color is obtrusive. The format is wasteful of page space. As an image, the table is uneditable. I suggest editor Mbeychok replace it with a table that is editable. As it stands, the graphic is not any more useful or relevant than putting steam tables or power generation curves into the article. --Blainster 21:24, 20 January 2006 (UTC)
- So what is it, a rough measure of how 'smoky' each fuel is? Tom Harrison Talk
-
- Actually, no, "smokiness" generally refers to opacity, or how difficult it is to see through. Opacity is measured in percent, and is a rough measure of the concentration and size of particulate matter in the flue gas. I am waiting for editor Mbeychok to explain what he has in mind. --Blainster 23:04, 20 January 2006 (UTC)
- (Response to Blainster from MBeychok) The concerns of the public and of our regulatory agencies with what comes out of the flue gas stacks from power plants (or any other large combustion furnaces) has increased ten-fold or more during the twenty years since you worked in a power plant. A great many people have the mistaken idea that coal burning creates a great deal more total flue gas than a "cleaner" fuel like natural gas. As shown in my table, coal burning does create more flue gas, but only marginally so. I did not want to dwell on that in my contribution lest I sound biased in favor of coal burning ... which I am not. I wanted the table to show the facts and to speak for itself.
- I suggest the information in the table needs better verbal explanation. The section does not state why the table belongs in a general article describing a power plant. Remember the encyclopedia is targeted at the educated layperson, so you need to provide context. I don't see how explaining the importance of flue gas volume could be considered a bias. --Blainster 22:56, 26 January 2006 (UTC)
- Deleting the table and only leaving the comparative scf/106 of flue gas for each of the fuels pretty well "guts" my contribution because:
-
- The credibility of my calculated results depends upon readers being able to see the compositions that I used for each fuel and to ascertain that they are typical ... not selected to bias the results. With those compositions, readers could actually perform their own calculations to check my results if they wanted to do so. Without the compositions, they could could not make independent checks.
- The credibility of my results also depends upon the readers being able to see what percentage of excess combustion air I used ... again to ascertain that I did indeed use typical values. And those excess combustion air values are also needed to permit independent checks of my results.
- I was attempting to condense the information to summarize the point I think you were trying to make. But of course your followup edits and thoughts are appreciated. This kind of detail is more likely to confuse than enlighten the general reader. If you wish to provide a tutorial, Wikibooks would be a more appropriate forum. There would also be more latitude for calculations in a subarticle on air pollution measurement and control. --Blainster 22:56, 26 January 2006 (UTC)
-
- Quite a bit of my table concerns how to convert the results into units used by some 99% of the world (the USA is the only nation still using scf and Btu's rather than metric units). Believe it or not, the vast majority of people on the planet don't know how many inches there are in a foot.
- Unit conversions are normally covered by links to articles on the units which already exist in Wikipedia. There are already some examples of this in the article. --Blainster 22:56, 26 January 2006 (UTC)
- Quite a bit of my table concerns how to convert the results into units used by some 99% of the world (the USA is the only nation still using scf and Btu's rather than metric units). Believe it or not, the vast majority of people on the planet don't know how many inches there are in a foot.
-
- All steam tables contain the same data because water has a fixed set of physical and thermodynamic properties. There are literally thousands of different composition natural gases, fuel oils and coals, all with different heating values, carbon-to-hydrogen ratios, and different physical properties. That is another reason why the readers should have my table to look at rather than just the final results.
- There could be loads of detail on steam properties which drive pressure vessel design, or coal properties which drive furnace design, but these things really belong in subsidiary articles. --Blainster 22:56, 26 January 2006 (UTC)
- All steam tables contain the same data because water has a fixed set of physical and thermodynamic properties. There are literally thousands of different composition natural gases, fuel oils and coals, all with different heating values, carbon-to-hydrogen ratios, and different physical properties. That is another reason why the readers should have my table to look at rather than just the final results.
- As for my table being a graphic image that is not editable, I would point out that photographs are also not editable. I don't see where that is relevant. I created that image some time ago so that I could use it on a number of Internet forums without having to cope with the plethora of markup languages in use (HTML, BB code, PHP code, Wiki markup, etc).
- Placing textual information into an image is not allowed by the community, because it prevents collaboration, which is the heart of the Wiki process. I can sympathise with not wishing to learn table code in Wiki, but one way to handle that is to place the information on the page and ask for help in getting it formatted. --Blainster 22:56, 26 January 2006 (UTC)
- As for your finding the color "obtrusive", one person's "obtrusive" may be another person's "favorite color". Does the Wikipedia have a "color" standard somewhere that I haven't yet found? Or do the Wiki editors have some "color police" looking for inappropriate colors?
- This is of course my opinion only. Color is negotiable, I would suggest pale colors are more readable on text pages. --Blainster 22:56, 26 January 2006 (UTC)
- Blainster, I also responded to you in your User discussion page ... I hope that you've seen it.
- Mbeychok January 20, 2006
- Yes, thanks for your input. A brief note on my user page will suffice (that triggers the message flag) with no need to duplicate the detail here. See my responses above, and once again, I appreciate your help in improving the article. --Blainster 22:56, 26 January 2006 (UTC)
[edit] Steam-electric power plants
I removed steam-electric power plant as an alternate name because it is incorrect. The article I created gives a better definition. Also, not all fossil fuel power plants are steam-electric. Gas turbines and reciprocating engines can be fossil fueled and they are not steam-electric (reciprocating engine power plants usually aren't very big, they range from 1 kw to about 20 MW). -- User:Kjkolb 22 January 2006
[edit] Further Response to Blainster
In your original message to me on my user talk page, you said:
"We do not own the material we contribute, so be prepared to have your entries edited mercilessly— the thought "but it's my article" should never cross your mind."
It seems evident to me that most of your points against the table that I contributed to this article (which you say that you wrote) are because you do indeed consider the article to be your own. Rather than carry this discussion any further, I have completely removed the table that I contributed. I have better things to with my time. mbeychok 17:28, 27 January 2006 (UTC)
- On the contrary, I welcomed the changes you made to my text. It is you who seem to consider your contributions inviolate. It is regrettable that you do not wish to carry on a discussion, which is the heart of the process of building a collaborative encyclopedia. But I harbor no ill will—if you feel inspired to rejoin the endeavor at any time, you are welcome to do so. --Blainster 17:44, 27 January 2006 (UTC)
[edit] Pollution
It seems that a section on pollution should be included but I'm reluctant to do this myself since this isn't really my area. In particular I believe the otherwise generally unknown but potentially very relevant and worrisome aspect of radioactive waste should be included (article currently contains an external link but otherwise no mention of the problem). 212.48.126.140 10:30, 22 May 2006 (UTC)
- It is unclear what kind of radioactive waste you are referring to. The small number of radiation sources used in power plant instrumentation are compact, sealed, licensed, and regularly inspected. Fossil fuel plants do not produce any waste of the sort produced by nuclear power plants. All coal has a small degree of natural radioactivity, and this is somewhat concentrated in coal ash, but is a much smaller hazard than the naturally occuring radon gas that collects in residential housing, for example. --Blainster 17:16, 22 May 2006 (UTC)
- I was refering to the trace elements that would be insignificant if there wouldn't be such a large amount of coal (or whatever) being burnt. The external link http://www.ornl.gov/info/ornlreview/rev26-34/text/colmain.html claims that a typical 1GW power station releases 5.2 tons of uranium and 12.8 tons of thorium per year. Even if one considers that maybe only 1% of it is not caught in the coal ash and is released into the biosphere, it still seems somewhat alarming especially considering the public outcry that would result if a nuclear powered facility would release radioactive waste of that magnitude. There are possibly other factors involved that make the situation more harmless than it seems but if there are, it would be good to be able to read about it here. However, I did find this mentioned on the coal page so this is all perhaps a mute point.212.48.126.140 13:15, 23 May 2006 (UTC)
- I am more concerned about the health effects of mercury release from burning coal than radioactive elements. The EPA was set to implement mercury reduction requirements until the Bush administration pushed it back by ten years. (I think the word you want in the last sentence is moot, meaning debatable, not mute.) --Blainster 18:05, 23 May 2006 (UTC)
- What you say about mercury is certainly relevant as well, not to mention whatever other heavy metals there may be, so perhaps a section listing all typical harmful pollutants would be beneficial. I still believe that the release of uranium and thorium is an underrated problem, for example, you wrote previously that radon gas is a concern (being a cause of lung cancer) and it would be interesting to know how much artificially released airborne uranium and thorium contributes to the production of radon (both elements can decay to radon). A hypothesis also exists that airborne uranium can be converted to plutonium, which is well known for its toxicity. (Yes, "moot" is what I meant. :-) Everything in Wikipedia is always so correct, unlike in other forums, one needs to be careful...)212.48.126.140 12:50, 29 May 2006 (UTC)
- I am more concerned about the health effects of mercury release from burning coal than radioactive elements. The EPA was set to implement mercury reduction requirements until the Bush administration pushed it back by ten years. (I think the word you want in the last sentence is moot, meaning debatable, not mute.) --Blainster 18:05, 23 May 2006 (UTC)
This article does need a pollution section though. raptor 11:22, 1 November 2006 (UTC)
I agree with raptor and 212.48.126.140, coal is infamous for its health dangers. The section should include radioactive fly ash, soot, nitrogen, carbon emissions, and everything else you can think of, why withhold information if you have it? I'd write it myself, but I don't know enough about it, nor do I have good sources at the moment. Also, to be frank, I don't think anyone cares about any one person's idea of which pollutant is most important; just put all of the pollutants in the section and everyone will be happy. 204.126.2.5 12 December 2006
[edit] cold/hot startup
anyone can advise the difference between the 2?
- First, let me say that you really should sign your user name to queries or comments. If you don't have a user name yet, you should sign in and get one. :)
- That said, I did quite a bit of searching using Google and it appears that:
- For thermal power plants, a cold startup is a startup that takes place after the power plant has been shut down for at least 48 to 72 hours (the exact number of hours varies from one reference source to another). A hot startup is a startup that takes place after the power plant has been down less than 2 to 48 hours (again the exact number of hours varies from one source to another). In other words, the difference between a cold startup and a hot startup depends on the number of hours that the plant has been shutdown and the exact number varies from one definer to another definer. The importance of the distinction between the two seems to be related to how long a plant may be permitted to exceed the regulatory limits on the air pollutant emissions of nitrogen oxides for example. In some cases, the nitrogen oxides regulatory limits may be different during hot and cold startups than during normal operation.
- For nuclear power plants, the definitions are different. A hot startup is one that takes place while the nuclear reactivity is still decreasing (i.e., the plant has not yet been fully shut down). A cold startup is one where the nuclear reactivity is no longer decreasing because the plant has been fully shut down.
- - mbeychok 20:28, 5 July 2006 (UTC)
-
- It also affects how the operator starts up his plant. For example, the boiler will probably have been drained down (to prevent corrosion) prior to a cold start. The operator may need to pre-fire the boiler with gas to warm it, and the turbines be taken off barring (in which they are made to slowly rotate to prevent the hot shaft sagging). The principal effect is however determining how quickly the operator can start up the plant and ramp up its output. BillC 21:48, 5 July 2006 (UTC)
[edit] Global view tag - re costs
I presume the figures given are for the United States as I doubt that they are the same everywhere. If this is the case, the article should say so. Olborne 21:36, 10 September 2006 (UTC)
- Olbourne, do you really think that one sentence about USdollar costs warrants labeling the entire article as lacking a global view? Seems like a pretty drastic personal judgement on your part. Do you have any good references giving significantly different costs in various countries? If so, why not include them in the article? - mbeychok 00:12, 11 September 2006 (UTC)
- Olbourne, from what I could find in the History page of this article, it was created on March 2, 2005 by User:Blainster. I suggest that you contact him at User Talk:Blainster about the cost figures. - mbeychok 00:22, 11 September 2006 (UTC)
-
- Olbourne, since you have not responded to my above comments, I am removing the global view tag. - mbeychok 23:17, 13 September 2006 (UTC)
[edit] Trains per day
3–5 trains per day doesn't sound right unless the trains at issue are shorter than unit trains, or are stockpiling fuel. A 2000 MW (sub-bituminous) plant at full load burns about 1000 ton/hour. But this would probably amount to no more than 16,000 tons in a day due to off-peak load reduction. The largest plants of around 3000 MW would then use 24,000 tons, which is still only 2.4 unit trains worth. --Blainster 07:46, 30 November 2006 (UTC)