Talk:Force
From Wikipedia, the free encyclopedia
Earlier talk archive at
[edit] Units of measurement section
IMO the units of measurement section is much too long, and gives disproportionate weight to silliness like the use of kg as a unit of force.--24.52.254.62 00:17, 4 November 2006 (UTC)
[edit] Rotation
As the article stands it says a force causes an object to rotate, and this is not accurate. No force is needed to keep an object spinning, such as in a gyroscope for instance. A force is needed to keep an object orbiting however. Both these motions however are called rotation. I'm not quite sure how to phrase it to make it accurate. Any suggestions? Roy Brumback 08:47, 6 November 2006 (UTC)
- In my opinion, the first sentence of the article should be simple. If you apply a force on a body that is not rotating, it may start rotating. This is what the sentence says, and I think it's good. I would suggest discussing the point mentioned by Roy Brumback later in the article. Yevgeny Kats 15:55, 6 November 2006 (UTC)
I agree it should be simple, but not at the expense of accuracy. As it's written, it makes it sound like a force it necessary to keep it rotating, which is not true in the case of spin. Roy Brumback 00:36, 7 November 2006 (UTC)
I've made a stab. I think the key is to emphasise the difference between a point particle and an extended body. A point particle doesn't rotate. The points in the gyroscope keep spinning because of the centrepetal force being provided by the structure of the metal. A gyroscope needs forces to keep spinning, they are just internal stresses. A "see also" bit pointing to moment would be good too.Rpf 14:11, 8 November 2006 (UTC)
This must be one of the hardest articles in Wikipedia to write. There are two issues; firstly it is meaningless to talk of motion without indicating what datum we are using for reference, i.e. the idea of inertial frames is necessary before moving on to force. Secondly, whilst in Newtonian mechanics force is viewed as the 'cause' of motion, modern field theories treat it more as a derived quantity, so to cover both contexts it becomes both 'cause' and 'effect'. If we treat force as an 'effect' in Newtonian mechanics, we end up with a circular argument defining mass. I think we can sacrifice rigour and retrict ourselves to the Newtonian world view. Sorry I can't help more, you are doing a great job. Gordon Vigurs 08:18, 8 December 2006 (UTC)
Categories: B-Class core topic articles | B-Class physics articles | Top-importance physics articles | Wikipedia Version 0.5 | Wikipedia CD Selection-0.5 | Wikipedia Release Version | B-Class Version 0.5 articles | Uncategorized Version 0.5 articles | B-Class Version 0.7 articles | Uncategorized Version 0.7 articles | Wikipedia controversial topics