User:Flippin42/formulæ

From Wikipedia, the free encyclopedia

Contents

[edit] e^gamma with products to infinity of kth roots of e


\lim_{n\to\infty} \left ( \prod_{k=1}^{n+1} \sqrt[k]{e} - \prod_{k=1}^{n} \sqrt[k]{e} \right ) = e^\gamma



[edit] nth triangular/n


\frac{\displaystyle{\sum_{k=1}^{n+1}} k}{n+1} - \frac{\displaystyle{\sum_{k=1}^n} k}{n} = 0.5



[edit] 2nd order tetration (n to the n) limit to infinity e relationship


\lim_{n\to\infty} \left ( \frac{(n+1)^{n+1}}{n^n} - \frac{n^n}{(n-1)^{n-1}} \right ) = e



[edit] nth root of n! limit to 1/e


\lim_{n\to\infty} \left ( \sqrt[n+1]{(n+1)!} - \sqrt[n]{n!} \right ) = \frac{1}{e}




[edit] consecutive powers sum


\lim_{n\to\infty} \left ( \frac{(n+4)^{n+1} - \underbrace{3^{n+1} + 4^{n+1} + 5^{n+1} + \dotsb}_{n+1}}{(n+3)^n - \underbrace{3^n + 4^n + 5^n + \dotsb}_n}    -    \frac{(n+3)^n - \underbrace{3^n + 4^n + 5^n + \dotsb}_n}{(n+2)^{n-1} - \underbrace{3^{n-1} + 4^{n-1} + 5^{n-1} + \dotsb}_{n-1}}     \right ) = e


OR...


\lim_{n\to\infty} \left ( \frac{(n+4)^{n+1} - \displaystyle{\sum_{k=3}^{n+3} k^{n+1}}} {(n+3)^n - \displaystyle{\sum_{k=3}^{n+2} k^n}}     -   \frac{(n+3)^n - \displaystyle{\sum_{k=3}^{n+2} k^n}}{(n+2)^{n-1} - \displaystyle{\sum_{k=3}^{n+1} k^{n-1}}}     \right ) = e



[edit] Euler's formula


e^{i\pi} + 1 = 0 \!



[edit] Power Towers

\sqrt{2}^{\sqrt{2}^{\sqrt{2}^{\sqrt{2}^{\sqrt{2}^{\sqrt{2}^{\sqrt{2}^{\sqrt{2}^{\sqrt{2}^{\sqrt{2}^{\sqrt{2}^{\sqrt{2}^{\sqrt{2}^{\sqrt{2}^{\sqrt{2}^{\sqrt{2}^{\sqrt{2}}}}}}}}}}}}}}}}} \approx 2\!


\sqrt{2}^{\overbrace{\sqrt{2}^{\sqrt{2}^{\sqrt{2}^{\sqrt{2}}}}}^\infty} = 2\!


\begin{align} \sqrt{2}\uparrow\uparrow\infty  &=  2              \\  \sqrt[e]{e} &= 1.444667861...  \\  \sqrt[e]{e}\uparrow\uparrow\infty  &=  e    \\   e^{-e} = \frac{1}{e^e} &= 0.065988035...    \\  \frac{1}{e^e}\uparrow\uparrow\infty  &=  \frac{1}{e}    \\   0.001\uparrow\uparrow\infty  &\in   \begin{Bmatrix} 0.001051251058... \\ 0.992764518... \end{Bmatrix}   ; \quad Difference = 0.991713267... \\  0.01\uparrow\uparrow\infty  &\in   \begin{Bmatrix} 0.01309252... \\ 0.941488368... \end{Bmatrix}   ; \quad Difference = 0.928395848... \\  0.015\uparrow\uparrow\infty  &\in   \begin{Bmatrix} 0.021585386... \\ 0.91333526... \end{Bmatrix}   ; \quad Difference = 0.891749873... \\  0.02\uparrow\uparrow\infty  &\in   \begin{Bmatrix} 0.03146156... \\ 0.884194383... \end{Bmatrix}   ; \quad Difference = 0.852732823... \\  0.03\uparrow\uparrow\infty  &\in   \begin{Bmatrix} 0.056132967... \\ 0.821327373... \end{Bmatrix}   ; \quad Difference = 0.765194406... \\  0.04\uparrow\uparrow\infty  &\in   \begin{Bmatrix} 0.08960084... \\ 0.749451269... \end{Bmatrix}   ; \quad Difference = 0.659850428... \\  0.045\uparrow\uparrow\infty  &\in   \begin{Bmatrix} 0.111117455... \\ 0.708513944... \end{Bmatrix}   ; \quad Difference = 0.597396489... \\  0.05\uparrow\uparrow\infty  &\in   \begin{Bmatrix} 0.137359395... \\ 0.662660838... \end{Bmatrix}   ; \quad Difference = 0.525301443... \\  0.055\uparrow\uparrow\infty  &\in   \begin{Bmatrix} 0.170720724... \\ 0.609472066... \end{Bmatrix}   ; \quad Difference = 0.438751341... \\  0.06\uparrow\uparrow\infty  &\in   \begin{Bmatrix} 0.216898064... \\ 0.54322953... \end{Bmatrix}   ; \quad Difference = 0.326331465... \\    \lim_{x\to 0} (x\uparrow\uparrow\infty) &\in   \begin{Bmatrix} 0 \\ 1 \end{Bmatrix}    \end{align}


\int_0^{\frac{1}{e^e}} \biggl [ (x \uparrow\uparrow \infty)_{Upper} - (x \uparrow\uparrow \infty)_{Lower} \biggr ] \cdot  dx \approx 0.045405

[edit] Text


\lim_{Uncertainty\to\infty} \sum_{then}^{now} Your Mistakes = Unbearable



\lim_{Hate\to\infty} \prod_{lies}^{truth} Anything \; You've \; Said = Ammunition



\lim_{Apologies\to Excuses} Familiarity = Contempt


[edit] Daniel Bennett


\mathfrak{Daniel \; Bennett} \qquad  \mathbb{DANIEL \; BENNETT}  \qquad  \mathcal{DANIEL \quad BENNETT}


[edit] Girls = Evil


\begin{align} Girls &= Time \times Money\\ Time &= Money\\ \therefore Girls &= Money^2\\ Money &= \sqrt{Evil}\\ \therefore Girls &= \sqrt{Evil}^2\\ Girls &= Evil \end{align}