Flipped SU(5)

From Wikipedia, the free encyclopedia

The Flipped SU(5) model is a GUT theory which states that the gauge group is [ SU(5) × U(1)χ ]/\mathbb{Z}_5 and the fermions form three families, each consisting of the representations \bar{5}_{-3}, 101 and 15. This includes three right-handed neutrinos, which is consistent with the observed neutrino oscillations. There is also a 101 and/or \bar{10}_{-1} called the Higgs field which acquires a VEV. This results in a spontaneous symmetry breaking from

[SU(5)\times U(1)_\chi]/\mathbb{Z}_5

to

[SU(3)\times SU(2)\times U(1)_Y]/\mathbb{Z}_6

and also,

\bar{5}_{-3}\rightarrow (\bar{3},1)_{-\frac{2}{3}}\oplus (1,2)_{-\frac{1}{2}} (uc and l)
10_{1}\rightarrow (3,2)_{\frac{1}{6}}\oplus (\bar{3},1)_{\frac{1}{3}}\oplus (1,1)_0 (q, dc and νc)
1_{5}\rightarrow (1,1)_1 (ec)

Compare to the Georgi-Glashow model. The left-handed antifermions are flipped, hence the name flipped SU(5).

24_0\rightarrow (8,1)_0\oplus (1,3)_0\oplus (1,1)_0\oplus (3,2)_{\frac{1}{6}}\oplus (\bar{3},2)_{-\frac{1}{6}}. See restricted representation.

The sign convention for U(1)χ varies from article/book to article.

The hypercharge Y/2 is a linear combination (sum) of the \begin{pmatrix}{1 \over 15}&0&0&0&0\\0&{1 \over 15}&0&0&0\\0&0&{1 \over 15}&0&0\\0&0&0&-{1 \over 10}&0\\0&0&0&0&-{1 \over 10}\end{pmatrix} of SU(5) and χ/5.

There are also the additional fields 5-2 and \bar{5}_2 containing the electroweak Higgs doublets.

Of course, calling the representations things like \bar{5}_{-3} and 240 is purely a physicist's convention, not a mathematician's convention, where representations are either labelled by Young tableaux or Dynkin diagrams with numbers on their vertices, but still, it is standard among GUT theorists.

Since the homotopy group

\pi_2\left(\frac{[SU(5)\times U(1)_\chi]/\mathbb{Z}_5}{[SU(3)\times SU(2)\times U(1)_Y]/\mathbb{Z}_6}\right)=0

this model does not predicts monopoles. See Hooft-Polyakov monopole.

This theory was invented by Dimitri Nanopoulos, with some collaboration by John Hagelin and John Ellis.

Image:proton_decay3.png

Contents

[edit] Minimal supersymmetric flipped SU(5)

[edit] spacetime

The N=1 superspace extension of 3+1 Minkowski spacetime

[edit] spatial symmetry

N=1 SUSY over 3+1 Minkowski spacetime with R-symmetry

[edit] gauge symmetry group

[SU(5)× U(1)χ]/Z5

[edit] global internal symmetry

Z2 (matter parity) not related to U(1)R in any way for this particular model

[edit] vector superfields

Those associated with the SU(5)× U(1)χ gauge symmetry

[edit] chiral superfields

As complex representations:


label description multiplicity SU(5)× U(1)χ rep \mathbb{Z}_2 rep U(1)R
10H GUT Higgs field 1 101 + 0
\bar{10}_H GUT Higgs field 1 \overline{10}_{-1} + 0
Hu electroweak Higgs field 1 \bar{5}_2 + 2
Hd electroweak Higgs field 1 5 − 2 + 2
\bar{5} matter fields 3 \bar{5}_{-3} - 0
10 matter fields 3 101 - 0
1 left handed positron 3 15 - 0
φ sterile neutrino (optional) 3 10 - 2
S singlet 1 10 + 2

[edit] Superpotential

A generic invariant renormalizable superpotential is a (complex) SU(5)\times U(1)_\chi\times\mathbb{Z}_2 invariant cubic polynomial in the superfields which has an R-charge of 2. It is a linear combination of the following terms: \begin{matrix} S&S\\ S 10_H \overline{10}_H&S 10_H^{\alpha\beta} \overline{10}_{H\alpha\beta}\\ 10_H 10_H H_d&\epsilon_{\alpha\beta\gamma\delta\epsilon}10_H^{\alpha\beta}10_H^{\gamma\delta} H_d^{\epsilon}\\ \overline{10}_H\overline{10}_H H_u&\epsilon^{\alpha\beta\gamma\delta\epsilon}\overline{10}_{H\alpha\beta}\overline{10}_{H\gamma\delta}H_{u\epsilon}\\ H_d 10 10&\epsilon_{\alpha\beta\gamma\delta\epsilon}H_d^{\alpha}10_i^{\beta\gamma}10_j^{\delta\epsilon}\\ H_d \bar{5} 1 &H_d^\alpha \bar{5}_{i\alpha} 1_j\\ H_u 10 \bar{5}&H_{u\alpha} 10_i^{\alpha\beta} \bar{5}_{j\beta}\\ \overline{10}_H 10 \phi&\overline{10}_{H\alpha\beta} 10_i^{\alpha\beta} \phi_j\\ \end{matrix}

The second column expands each term in index notation (neglecting the proper normalization coefficient). i and j are the generation indices. The coupling Hd 10i 10j has coefficients which are symmetric in i and j.

In those models without the optional φ sterile neutrinos, we add the nonrenormalizable couplings

\begin{matrix} (\overline{10}_H 10)(\overline{10}_H 10)&\overline{10}_{H\alpha\beta}10^{\alpha\beta}_i \overline{10}_{H\gamma\delta} 10^{\gamma\delta}_j\\ \overline{10}_H 10 \overline{10}_H 10&\overline{10}_{H\alpha\beta}10^{\beta\gamma}_i\overline{10}_{H\gamma\delta}10^{\delta\alpha}_j \end{matrix}

instead. These couplings do break the R-symmetry, though.