File system
From Wikipedia, the free encyclopedia
-
For library and office filing systems, see Library classification.
In computing, a file system (often also spelled filesystem) is a method for storing and organizing computer files and the data they contain to make it easy to find and access them. File systems may use a storage device such as a hard disk or CD-ROM and involve maintaining the physical location of the files, they might provide access to data on a file server by acting as clients for a network protocol (e.g., NFS, SMB, or 9P clients), or they may be virtual and exist only as an access method for virtual data (e.g. procfs).
More formally, a file system is a set of abstract data types that are implemented for the storage, hierarchical organization, manipulation, navigation, access, and retrieval of data. File systems share much in common with database technology, but it is debatable whether a file system can be classified as a special-purpose database (DBMS).[citation needed]
Contents |
[edit] Aspects of file systems
The most familiar file systems make use of an underlying data storage device that offers access to an array of fixed-size blocks, sometimes called sectors, generally 512 bytes each. The file system software is responsible for organizing these sectors into files and directories, and keeping track of which sectors belong to which file and which are not being used.
However, file systems need not make use of a storage device at all. A file system can be used to organize and represent access to any data, whether it be stored or dynamically generated (eg, from a network connection).
Whether the file system has an underlying storage device or not, file systems typically have directories which associate file names with files, usually by connecting the file name to an index into a file allocation table of some sort, such as the FAT in an MS-DOS file system, or an inode in a Unix-like file system. Directory structures may be flat, or allow hierarchies where directories may contain subdirectories. In some file systems, file names are structured, with special syntax for filename extensions and version numbers. In others, file names are simple strings, and per-file metadata is stored elsewhere.
The hierarchical file system was an early research interest of Dennis Ritchie of Unix fame; previous implementations were restricted to only a few levels, notably the IBM implementations, even of their early databases like IMS. After the success of Unix, Ritchie extended the file system concept to every object in his later operating system developments, such as Plan 9 and Inferno.
Traditional file systems offer facilities to create, move and delete both files and directories. They lack facilities to create additional links to a directory (hard links in Unix), rename parent links (".." in Unix-like OS), and create bidirectional links to files.
Traditional file systems also offer facilities to truncate, append to, create, move, delete and in-place modify files. They do not offer facilities to prepend to or truncate from the beginning of a file, let alone arbitrary insertion into or deletion from a file. The operations provided are highly asymmetric and lack the generality to be useful in unexpected contexts. For example, interprocess pipes in Unix have to be implemented outside of the file system because the pipes concept does not offer truncation from the beginning of files.
Secure access to basic file system operations can be based on a scheme of access control lists or capabilities. Research has shown access control lists to be difficult to secure properly, which is why research operating systems tend to use capabilities. Commercial file systems still use access control lists. see: secure computing
Arbitrary attributes can be associated on advanced file systems, such as XFS, ext2/3, and HDF+, using extended file attributes. This feature is implemented in the kernels of Linux, FreeBSD and Mac OS X operating systems, and allows metadata to be associated with the file at the file system level. This, for example, could be the author of a document, the character encoding of a plain-text document, or a checksum.
[edit] Types of file systems
File system types can be classified into disk file systems, network file systems and special purpose file systems.
[edit] Disk file systems
A disk file system is a file system designed for the storage of files on a data storage device, most commonly a disk drive, which might be directly or indirectly connected to the computer. Examples of disk file systems include FAT, NTFS, HFS and HFS+, ext2, ext3, ISO 9660, ODS-5, and UDF. Some disk file systems are journaling file systems or versioning file systems.
[edit] Database file systems
A new concept for file management is the concept of a database-based file system. Instead of, or in addition to, hierarchical structured management, files are identified by their characteristics, like type of file, topic, author, or similar metadata.
[edit] Transactional file systems
This is a special kind of file system in that it logs events or transactions to files. Each operation that you do may involve changes to a number of different files and disk structures. In many cases, these changes are related, meaning that it is important that they all be executed at the same time. Take for example a bank sending another bank some money electronically. The bank's computer will "send" the transfer instruction to the other bank and also update its own records to indicate the transfer has occurred. If for some reason the computer crashes before it has had a chance to update its own records, then on reset, there will be no record of the transfer but the bank will be missing some money. A transactional system can rebuild the actions by resynchronizing the "transactions" on both ends to correct the failure. All transactions can be saved, as well, providing a complete record of what was done and where. This type of file system is designed and intended to be fault tolerant and necessarily, incurs a high degree of overhead.
[edit] Network file systems
A "network file system" is a file system that acts as a client for a remote file access protocol, providing access to files on a server. Examples of network file systems include clients for the NFS, SMB, AFP, and 9P protocols, and file-system-like clients for FTP and WebDAV.
[edit] Special purpose file systems
A special purpose file system is basically any file system that is not a disk file system or network file system. This includes systems where the files are arranged dynamically by software, intended for such purposes as communication between computer processes or temporary file space.
Special purpose file systems are most commonly used by file-centric operating systems such as Unix. Examples include the procfs (/proc) file system used by some Unix variants, which grants access to information about processes and other operating system features.
Deep space science exploration craft, like Voyager I & II used digital tape based special file systems. Most modern space exploration craft like Cassini-Huygens used Real-time operating system file systems or RTOS influenced file systems. The Mars Rovers are one such example of an RTOS file system, important in this case because they are implemented in flash memory.
[edit] File systems and operating systems
Most operating systems provide a file system, as a file system is an integral part of any modern operating system. Early microcomputer operating systems' only real task was file management — fact reflected in their names (see DOS and QDOS). Some early operating systems had a separate component for handling file systems which was called a disk operating system. On some microcomputers, the disk operating system was loaded separately from the rest of the operating system. On early operating systems, there was usually support for only one, native, unnamed file system; for example, CP/M supports only its own file system, which might be called "CP/M file system" if needed, but which didn't bear any official name at all.
Because of this, there needs to be an interface provided by the operating system software between the user and the file system. This interface can be textual (such as provided by a command line interface, such as the Unix shell, or OpenVMS DCL) or graphical (such as provided by a graphical user interface, such as file browsers). If graphical, the metaphor of the folder, containing documents, other files, and nested folders is often used (see also: directory and folder).
[edit] Flat file systems
In a flat file system, there are no directories — everything is stored at the same (root) level on the media, be it a hard disk, floppy disk, etc. While simple, this system rapidly becomes inefficient as the number of files grows, and makes it difficult for users to organise data into related groups.
Like many small systems before it, the original Apple Macintosh featured a flat file system, called Macintosh File System. Its version of Mac OS was unusual in that the file management software (Macintosh Finder) created the illusion of a partially hierarchical filing system on top of MFS. MFS was quickly replaced with Hierarchical File System, which supported real directories.
[edit] File systems under Unix and Unix-like systems
Unix and Unix-like operating systems assign a device name to each device, but this is not how the files on that device are accessed. Instead, Unix creates a virtual file system, which makes all the files on all the devices appear to exist under one hierarchy. This means, in Unix, there is one root directory, and every file existing on the system is located under it somewhere. Furthermore, the Unix root directory does not have to be in any physical place. It might not be on your first hard drive - it might not even be on your computer. Unix can use a network shared resource as its root directory.
To gain access to files on another device, you must first inform the operating system where in the directory tree you would like those files to appear. This process is called mounting a file system. For example, to access the files on a CD-ROM, one must tell the operating system "Take the file system from this CD-ROM and make it appear under thus-and-such a directory". The directory given to the operating system is called the mount point - it might, for example, be /mnt. The /mnt directory exists on many Unix-like systems (as specified in the Filesystem Hierarchy Standard) and is intended specifically for use as a mount point for temporary media like floppy disks or CDs. It may be empty, or it may contain subdirectories for mounting individual devices. Generally, only the administrator (i.e. root user) may authorize the mounting of file systems.
Unix-like operating systems often include software and tools that assist in the mounting process and provide it new functionality. Some of these strategies have been coined "auto-mounting" as a reflection of their purpose.
- In many situations, file systems other than the root need to be available as soon as the operating system has booted. All Unix-like systems therefore provide a facility for mounting file systems at boot time. System administrators define these file systems in the configuration file fstab, which also indicates options and mount points.
- In some situations, there is no need to mount certain file systems at boot time, although their use may be desired thereafter. There are some utilities for Unix-like systems that allow the mounting of predefined file systems upon demand.
- Removable media have become very common with microcomputer platforms. They allow programs and data to be transferred between machines without a physical connection. Two common examples include CD-ROMs and DVDs. Utilities have therefore been developed to detect the presence and availability of a medium and then mount that medium without any user intervention.
- Progressive Unix-like systems have also introduced a concept called supermounting; see, for example, the Linux supermount-ng project. For example, a floppy disk that has been supermounted can be physically removed from the system. Under normal circumstances, the disk should have been synchronised and then unmounted before its removal. Provided synchronisation has occurred, a different disk can be inserted into the drive. The system automatically notices that the disk has changed and updates the mount point contents to reflect the new medium. Similar functionality is found on standard Windows machines.
- A similar innovation preferred by some users is the use of autofs, a system that, like supermounting, eliminates the need for manual mounting commands. The difference from supermount, other than compatibility in an apparent greater range of applications such as access to file systems on network servers, is that devices are mounted transparently when requests to their file systems are made, as would be appropriate for file systems on network servers, rather than relying on events such as the insertion of media, as would be appropriate for removable media.
[edit] File systems under Mac OS X
Mac OS X uses a file system that it inherited from Mac OS called HFS Plus. HFS Plus is a metadata-rich and case preserving file system. Due to the Unix roots of Mac OS X, Unix permissions were added to HFS Plus. Later versions of HFS Plus added a journal to prevent corruption of the file system structure and introduced a number of optimizations to the allocation algorithms in an attempt to defragment files automatically without requiring an external defragmenter.
Filenames can be up to 255 characters. HFS Plus uses Unicode to store filenames. On Mac OS X, the filetype can come from the Type code stored in file's metadata or the filename.
HFS Plus has three kinds of links: Hard links, Symbolic links and Aliases. Aliases are designed to maintain a link to their original file even if they are moved or renamed.
[edit] File systems under Plan 9 from Bell Labs
Plan 9 from Bell Labs was originally designed to extend some of Unix's good points, and to introduce some new ideas of its own while fixing the shortcomings of Unix.
With respect to file systems, the Unix system of treating things as files was continued, but in Plan 9, everything is treated as a file, and accessed as a file would be (ie., no ioctl or mmap). Perhaps surprisingly, while the file interface is made universal it is also simplified considerably, for example symlinks, hard links and suid are made obsolete, and an atomic create/open operation is introduced. More importantly the set of file operations becomes well defined and subversions of this like ioctl are eliminated.
Secondly, the underlying 9P protocol was used to remove the difference between local and remote files (except for a possible difference in latency). This has the advantage that a device or devices, represented by files, on a remote computer could be used as though it were the local computer's own device(s). This means that under Plan 9, multiple file servers provide access to devices, classing them as file systems. Servers for "synthetic" file systems can also run in user space bringing many of the advantages of micro kernel systems while maintaining the simplicity of the system.
Everything on a Plan 9 system has an abstraction as a file; networking, graphics, debugging, authentication, capabilities, encryption, and other services are accessed via I-O operations on file descriptors. For example, this allows the use of the IP stack of a gateway machine without need of NAT, or provides a network-transparent window system without the need of any extra code.
Another example: a Plan-9 application receives FTP service by opening an FTP site. The ftpfs server handles the open by essentially mounting the remote FTP site as part of the local file system. With ftpfs as an intermediary, the application can now use the usual file-system operations to access the FTP site as if it were part of the local file system. A further example is the mail system which uses file servers that synthesize virtual files and directories to represent a user mailbox as /mail/fs/mbox. The wikifs provides a file system interface to a wiki.
These file systems are organized with the help of private, per-process namespaces, allowing each process to have a different view of the many file systems that provide resources in a distributed system.
The Inferno operating system shares these concepts with Plan 9.
[edit] File systems under Microsoft Windows
Microsoft Windows developed out of an earlier operating system (MS-DOS which in turn was based on QDOS and that on CP/M-80, which took many ideas from still earlier operating systems, notably several from DEC), and has added file systems from several other sources since its first release (e.g. Unix). As such, Windows makes use of the FAT (File Allocation Table) and NTFS (New Technology File System) file systems. Older versions of the FAT file system (FAT12 and FAT16) had file name length limits, a limit on the number of entries in the root directory of the file system and had restrictions on the maximum size of FAT-formatted disks or partitions. Specifically, FAT12 and FAT16 had a limitation of 8 characters for the file name, and 3 characters for the extension. (This is commonly referred to as the 8.3 limit.) VFAT, which was an extension to FAT12 and FAT16 introduced in Windows NT 3.5 and subsequently included in Windows 95, allowed for long file names (LFN). FAT32 also addressed many of the limits in FAT12 and FAT16, though such limits are still small compared to NTFS.
NTFS, introduced with the Windows NT operating system, allowed ACL-based permission control. Hard links, multiple file streams, attribute indexing, quota tracking, compression and mount-points for other file systems (called "junctions") are also supported, though not all these features are well-documented.
Unlike many other operating systems, Windows uses a drive letter abstraction at the user level to distinguish one disk or partition from another. For example, the path C:\WINDOWS\ represents a directory WINDOWS on the partition represented by the letter C. The C drive is most commonly used for the primary hard disk partition, on which Windows is installed and from which it boots. This "tradition" has become so firmly ingrained that bugs came about in older versions of Windows which made assumptions that the drive that the operating system was installed on was C. The tradition of using "C" for the drive letter can be traced to MS-DOS, where the letters A and B were reserved for up to two floppy disk drives; in a common configuration, A would be the 3½-inch floppy drive, and B the 5¼-inch one. Network drives may also be mapped to drive letters.
Since Windows primarily interacts with the user via a graphical user interface, its documentation refers to directories as a folder which contains files, and is represented graphically with a folder icon.
[edit] File systems under OpenVMS
This topic is discussed here: Files-11
[edit] File systems under MVS [IBM Mainframe]
This topic is discussed here: MVS#MVS filesystem
[edit] See also
- List of file systems
- Comparison of file systems
- Filename extension
- Disk sharing
- Virtual file system
- Distributed file system
- Filesystem API
- Physical and logical storage
- List of Unix programs
[edit] References
Cited references
General references
- Jonathan de Boyne Pollard. Disc and volume size limits. Frequently Given Answers. Retrieved on February 9, 2005.
- IBM. OS/2 corrective service fix JR09427. Retrieved on February 9, 2005.
- Attribute - $EA_INFORMATION (0xD0). NTFS Information, Linux-NTFS Project. Retrieved on February 9, 2005.
- Attribute - $EA (0xE0). NTFS Information, Linux-NTFS Project. Retrieved on February 9, 2005.
- Attribute - $STANDARD_INFORMATION (0x10). NTFS Information, Linux-NTFS Project. Retrieved on February 21, 2005.
- Apple Computer Inc. Technical Note TN1150: HFS Plus Volume Format. Detailed HFS Plus and HFSX description. Retrieved on May 2, 2006.
- File System Forensic Analysis, Brian Carrier, Addison Wesley, 2005.
[edit] Further reading
- Local Filesystems for Windows
- Understanding File-Size Limits on NTFS and FAT
- Benchmarking Filesystems Part II using kernel 2.6, by Justin Piszcz, Linux Gazette 122, January 2006
- Linux File System Benchmarks v2.6 kernel with a stress on CPU usage
- Interview With the People Behind JFS, ReiserFS & XFS
- Large List of File System Summaries
- Filesystems (ext3, ReiserFS, XFS, JFS) comparison on Debian Etch
- Overview of some filesystems (outdated)
- Linux large file support (outdated)
- Sparse files support (outdated)
- Benchmarking Filesystems (outdated) by Justin Piszcz, Linux Gazette 102, May 2004
- Journaled Filesystem Benchmarks (outdated): A comparison of ReiserFS, XFS, JFS, ext3 & ext2
- Journal File System Performance (outdated): ReiserFS, JFS, and Ext3FS show their merits on a fast RAID appliance
- Linux Filesystem Benchmarks