Fiber diffraction
From Wikipedia, the free encyclopedia
Fiber diffraction is a scattering technique in which molecular structure is determined from scattering data (usually of X-rays or electrons) from filaments composed of a regular array of molecules distinguished by a single direction (the fiber axis). The resulting diffraction patterns show layer lines, each with Bessel function intensities.
[edit] Historical role
Fiber diffraction data led to several important advances in the development of structural biology, e.g., the original models of the α-helix and the Watson-Crick model of double-stranded DNA.
[edit] References
Cochran W, Crick FHC and Vand V. (1952) "The Structure of Synthetic Polypeptides. I. The Transform of Atoms on a Helix", Acta Cryst., 5, 581-586.
Protein structure determination methods | ||
---|---|---|
High resolution: | X-ray crystallography | NMR | Electron crystallography | |
Medium resolution: | Cryo-electron microscopy | Fiber diffraction | Mass spectrometry | |
Spectroscopic: | NMR | Circular dichroism | Absorbance | Fluorescence | Fluorescence anisotropy | |
Translational Diffusion: | Analytical ultracentrifugation | Size exclusion chromatography | Light scattering | NMR | |
Rotational Diffusion: | Fluorescence anisotropy | Flow birefringence | Dielectric relaxation | NMR | |
Chemical: | Hydrogen-deuterium exchange | Site-directed mutagenesis | Chemical modification | |
Thermodynamic: | Equilibrium unfolding | |
Computational: | Protein structure prediction | Molecular docking | |
←Tertiary structure | Quaternary structure→ |