Far infrared laser
From Wikipedia, the free encyclopedia
Far infrared laser (FIR laser, terahertz laser) is a laser with output wavelength in far infrared part of the electromagnetic spectrum, between 30-1000 µm (10 THz-300 GHz). It is one of the possible sources of terahertz radiation.
FIR lasers have application in terahertz time-domain spectroscopy and terahertz imaging. They can be used to detect explosives and chemical warfare agents, by the means of infrared spectroscopy.
FIR lasers typically consist of a long (1-2 meters) waveguide filled with gaseous organic molecules, optically pumped. They are highly inefficient, often require helium cooling, high magnetic fields, and/or are only line tunable. Efforts to develop smaller solid-state alternatives are under way.
The p-Ge (p-type germanium) laser is a tunable, solid state, far infrared laser which has existed for over 25 years. It operates in crossed electric and magnetic fields at liquid helium temperatures. Wavelength selection can be achieved by changing the applied electric/magnetic fields or through the introduction of intracavity elements.
Quantum cascade laser (QCL) is a construction of such alternative. It is a solid-state semiconductor laser that can operate continuously with output power of over 100 mW and wavelength of 9.5 µm. A prototype was already demonstrated. [1]
Free electron lasers can also operate on far infrared wavelengths.
Femtosecond Ti:sapphire mode-locked lasers are also being used.