F-distribution

From Wikipedia, the free encyclopedia

Fisher-Snedecor
Probability density function
Cumulative distribution function
Parameters d_1>0,\ d_2>0 deg. of freedom
Support x \in [0; +\infty)\!
Probability density function (pdf) \frac{\sqrt{\frac{(d_1\,x)^{d_1}\,\,d_2^{d_2}} {(d_1\,x+d_2)^{d_1+d_2}}}} {x\,\mathrm{B}\!\left(\frac{d_1}{2},\frac{d_2}{2}\right)}\!
Cumulative distribution function (cdf) I_{\frac{d_1 x}{d_1 x + d_2}}(d_1/2, d_2/2)\!
Mean \frac{d_2}{d_2-2}\! for d2 > 2
Median
Mode \frac{d_1-2}{d_1}\;\frac{d_2}{d_2+2}\! for d1 > 2
Variance \frac{2\,d_2^2\,(d_1+d_2-2)}{d_1 (d_2-2)^2 (d_2-4)}\! for d2 > 4
Skewness \frac{(2 d_1 + d_2 - 2) \sqrt{8 (d_2-4)}}{(d_2-6) \sqrt{d_1 (d_1 + d_2 -2)}}\!
for d2 > 6
Excess Kurtosis see text
Entropy
mgf see text for raw moments
Char. func.

In probability theory and statistics, the F-distribution is a continuous probability distribution. It is also known as Snedecor's F distribution or the Fisher-Snedecor distribution (after R.A. Fisher and George W. Snedecor).

A random variate of the F-distribution arises as the ratio of two chi-squared variates:

\frac{U_1/d_1}{U_2/d_2}

where

The F-distribution arises frequently as the null distribution of a test statistic, especially in likelihood-ratio tests, perhaps most notably in the analysis of variance; see F-test.

The expectation, variance, and skewness are given in the sidebox; for d2 > 8, the kurtosis is

\frac{12(20d_2-8d_2^2+d_2^3+44d_1-32d_1d_2+5d_2^2d_1-22d_1^2+5d_2d_1^2-16)}{d_1(d_2-6)(d_2-8)(d_1+d_2-2)}

The probability density function of an F(d1, d2) distributed random variable is given by

g(x) = \frac{1}{\mathrm{B}(d_1/2, d_2/2)} \; \left(\frac{d_1\,x}{d_1\,x + d_2}\right)^{d_1/2} \; \left(1-\frac{d_1\,x}{d_1\,x + d_2}\right)^{d_2/2} \; x^{-1}

for real x ≥ 0, where d1 and d2 are positive integers, and B is the beta function.

The cumulative distribution function is

G(x) = I_{\frac{d_1 x}{d_1 x + d_2}}(d_1/2, d_2/2)

where I is the regularized incomplete beta function.

[edit] Generalization

A generalization of the (central) F-distribution is the noncentral F-distribution.

[edit] Related distributions and properties

[edit] External links

Image:Bvn-small.png Probability distributionsview  talk  edit ]
Univariate Multivariate
Discrete: BernoullibinomialBoltzmanncompound PoissondegenerateGauss-Kuzmingeometrichypergeometriclogarithmicnegative binomialparabolic fractalPoissonRademacherSkellamuniformYule-SimonzetaZipfZipf-Mandelbrot Ewensmultinomial
Continuous: BetaBeta primeCauchychi-squareDirac delta functionErlangexponentialexponential powerFfadingFisher's zFisher-TippettGammageneralized extreme valuegeneralized hyperbolicgeneralized inverse GaussianHalf-LogisticHotelling's T-squarehyperbolic secanthyper-exponentialhypoexponentialinverse chi-squareinverse gaussianinverse gammaKumaraswamyLandauLaplaceLévyLévy skew alpha-stablelogisticlog-normalMaxwell-BoltzmannMaxwell speednormal (Gaussian)ParetoPearsonpolarraised cosineRayleighrelativistic Breit-WignerRiceStudent's ttriangulartype-1 Gumbeltype-2 GumbeluniformVoigtvon MisesWeibullWigner semicircleWilks' lambda DirichletKentmatrix normalmultivariate normalvon Mises-FisherWigner quasiWishart
Miscellaneous: Cantorconditionalexponential familyinfinitely divisiblelocation-scale familymarginalmaximum entropyphase-typeposteriorpriorquasisamplingsingular