Dual object

From Wikipedia, the free encyclopedia

An object A of a monoidal category (\mathbf{C},\otimes,I) admits a dual when there exists an object A * together with two morphisms

\eta_A:I\to A^*\otimes A and \varepsilon_A:A\otimes A^*\to I

such that

\lambda_A\circ(\varepsilon_A\otimes A)\circ\alpha_{A,A^*,A}^{-1}\circ(A\otimes\eta_A)\circ\rho_A^{-1}=\mathrm{id}_A

and

\rho_{A^*}\circ(A^*\otimes\varepsilon_A)\circ\alpha_{A^*,A,A^*}\circ(\eta_A\otimes A^*)\circ\lambda_{A^*}^{-1}=\mathrm{id}_{A^*}.
This category theory-related article is a stub. You can help Wikipedia by expanding it.