Talk:Divisible group

From Wikipedia, the free encyclopedia

I haven't been able to find out quickly what a quasicyclic group is - in relation to locally cyclic group. The usual examples of qc groups are the p-power roots of unity (under x) - is that a definition?

Charles Matthews 16:18, 19 Feb 2004 (UTC)

Some authors call p-quasicyclic group the p-primary component of Q/Z (or the p-power roots of unity, or the inductive limit of the Z/p^nZ).

Others define what a quasicyclic group is and then prove that every quasicyclic group is isomorphic to a p-primary component of Q/Z. I don't remember what they call a quasicyclic group. This is a property dual (in a way) to the property of being cyclic. I'll check at the library this week.

Pnou Mon Mar 1 10:07:06 UTC 2004