CRYPTON
From Wikipedia, the free encyclopedia
In cryptography, CRYPTON is a block cipher submitted as a candidate for the Advanced Encryption Standard (AES). It has a very efficient in hardware implementation and was designed by Chae Hoon Lim of Future Systems Inc.
CRYPTON algorithm processes blocks of 128 bits in the form of 4x4 byte arrays; the cyclic transformation consists of four steps: byte-wise substitution, column-wise bit permutation, column-to-row transposition and finally key addition. An atomic unit of the encryption process is constiuted by 12 repetitions of the same cycle. Due to the algorithm's nature, the decryption process can be made identical to the encryption process using a different key.
[edit] See also
[edit] External links
- Hardware Design and Performance Estimation of The 128-bit Block Cipher CRYPTON by Eunjong Hong, Jai-Hoon Chung, Chae Hoon Lim
- SCAN's entry for CRYPTON version 0.5 as originally submitted as AES candidate to NIST
- CRYPTON: A New 128-bit Block Cipher - Specification and Analysis (Version 0.5) by Chae Hoon Lim, Hyo Sun Hwang
- CRYPTON: A New 128-bit Block Cipher - Specification and Analysis (Version 1.0) by Chae Hoon Lim, Hyo Sun Hwang