Crosscap number

From Wikipedia, the free encyclopedia

In the mathematical field of knot theory, the crosscap number of a knot K is the minimum of

1 − χ(S),

taken over all compact, connected, nonorientable surfaces S bounding K; here χ is the Euler characteristic. The crosscap number of the unknot is defined to be zero.

[edit] Examples

The formula for the knot sum is

C(k_1)+C(k_2)-1 \leq C(k_1 \# k_2) \leq C(k_1)+C(k_2).

[edit] References

  • Clark, B.E. "Crosscaps and Knots" , Int. J. Math and Math. Sci, Vol 1, 1978, pp 113-124
  • Murakami, Hitoshi and Yasuhara, Akira. "Crosscap number of a knot," Pacific J. Math. 171 (1995), no. 1, 261--273.
  • Teragaito, Masakazu. "Crosscap numbers of torus knots," Topology Appl. 138 (2004), no. 1-3, 219--238.
  • Teragaito, Masakazu and Hirasawa, Mikami. "Crosscap numbers of 2-bridge knots," Arxiv:math.GT/0504446.
  • J.Uhing. "Zur Kreuzhaubenzahl von Knoten", diploma thesis, 1997, University of Dortmund, (German language)