Talk:Conservative force

From Wikipedia, the free encyclopedia

WikiProject Physics This article is within the scope of WikiProject Physics, which collaborates on articles related to physics.
Stub This article has been rated as Stub-Class on the assessment scale.
??? This article has not yet received an importance rating within physics.

This article has been rated but has no comments. If appropriate, please review the article and leave comments here to identify the strengths and weaknesses of the article and what work it will need.

This article has been automatically assessed as Stub-Class by WikiProject Physics because it uses a stub template.
  • If you agree with the assessment, please remove {{Physics}}'s auto=yes parameter from this talk page.
  • If you disagree with the assessment, please change it by editing the class parameter of the {{Physics}} template, removing {{Physics}}'s auto=yes parameter from this talk page, and removing the stub template from the article.


Isn't it the force field, rather than the force itself, that is conservative? Michael Hardy 20:55, 29 May 2004 (UTC)

Certain forces (in the sense of phenomena, not vectors; e.g. gravity) always generate conservative force fields, and others (like the obvious friction) never do (and in fact could be argued not to generate force fields at all). --Tardis 04:52, 31 October 2006 (UTC)

I removed magnetism as a nonconservative force; the cyclotron frequency (neglecting cyclotron radiation) seems to counterindicate it. Just because \nabla \times \mathbf{B} \not= 0 doesn't mean that the force is nonconservative! (Of course, time-changing magnetic fields can impart momentum, but that's separate.) Just drawing attention to this edit in case I'm crazy. --Tardis 04:52, 31 October 2006 (UTC)

[edit] My edit

I tried to make the page a bit more accessible to the general public, to start with. I'll try to create an image, but I'm not good at that so I'll hope someone improve on me :) Considering the above discussion, I inserted the magnetic force again, but added a remark about time-independency of the electric field (Maxwell says: rot B = - dE/dt). Hope this will give people a nudge to start editing. --CompuChip 16:39, 5 December 2006 (UTC)

And I apologize for the apostrophe abuse... Should have known better --CompuChip 18:22, 15 December 2006 (UTC)