Talk:Conjunction fallacy

From Wikipedia, the free encyclopedia

Currently, this is confused:

(a) I assume it should read 85% choose 2, or there is no point here (b) the later wording 'people get this problem' is ambiguous - could mean people do see the point.

Charles Matthews 18:01, 17 Jun 2004 (UTC)

Yes, yes I fixed these after re-reading. --Taak 18:28, 17 Jun 2004 (UTC)

[edit] Where most people go wrong

I think the example given doesn't really demonstrate a fallacy so much as the way wording can confuse an issue. Clearly, from a probability standpoint, "Linda is a bank teller" must be more probable than "Linda is a bank teller and is active in the feminist movement". However, when presented with the two choices, people may assume that the first option, "Linda is a bank teller", is meant to be "Linda is just a bank teller" (i.e., Linda is a bank teller but is not involved with the feminist movement). In other words, the real fallacy may not be one of conjunction but one of reading too much into the way it's worded. - furrykef (Talk at me) 01:40, 4 February 2006 (UTC)

I read about this objection before, and I've seen that studies have been made to show that even eliminating the possibility of that error didn't prevent people from committing the fallacy. When I find the specific info I'll add it to the article, if it's appropriate. Rbarreira 12:20, 1 August 2006 (UTC)

In other words, 85% of people believe both in the "researchers don't ask stupid questions" fallacy (and so assume that option 1 implies that Linda doesn't actively participate in the feminist movement) and that Linda is more likely to be both a bank teller and a feminist than a bank teller and not a feminist.

[edit] No Paradox here

There is no reason to call this a paradox, as the material requirements for a paradox do not occur. While it is true that people would not expect that each representative (but less than certain) conjunction would reduce the probability; the fact that the probability itself is diminished is not paradoxical, as demonstrated easily in the example given on this page. In the mathematical proof of the example, it is explicitly demonstrated that no such paradox occurs.

Just because something violates the expectations of the reader does not make it a paradox, but rather sets it up closer to irony, than a paradox. --Puellanivis 04:42, 30 July 2006 (UTC)