Conformal symmetry
From Wikipedia, the free encyclopedia
In theoretical physics, conformal symmetry is a symmetry under dilatation (scale invariance) and under the special conformal transformations. Together with the Poincaré group these generate the conformal symmetry group.
The conformal group has the following representation in spacetime:
,
,
Where Mμν are the Lorentz generators, Pμ generates translations, D generates dilatation and Kμ generates the special conformal transformations.
The commutation relations, in addition to those of the Poincaré group, are as follows:
[D,D] = 0 , [D,Kμ] = − Kμ
[D,Pμ] = Pμ , [Kμ,Kν] = 0
[Kμ,Pν] = ημνD − iMμν
Additionally, D is a scalar and Kμ is a covariant vector under the Lorentz transformations.
In two dimensional spacetime, the transformations of the conformal group are the conformal transformations.
[edit] Uses
The largest possible symmetry group of a non-supersymmetric interacting field theory is a direct product of the conformal group with an internal group. Such theories are known as conformal field theories.
One particular application is to critical phenomena (phase transitions of the second order) in systems with local interactions. The fluctuations in such systems are conformally invariant at the critical point. That allows for classification of universality classes of phase transitions in terms of conformal field theories. Conformal invariance is also discovered in two-dimensional turbulence at high Reynolds number.
Several spaces and theories in high energy physics admit the conformal symmetry:
- N=4 supersymmetric Yang-Mills.
- The theory over the worldsheet in string theory.