Cold-blooded
From Wikipedia, the free encyclopedia
-
For the 1995 movie about hitmen, see Coldblooded (movie).
Cold-blooded organisms maintain their body temperatures in ways different from mammals and birds. The term is now outdated in scientific contexts. Cold-blooded creatures were, initially, presumed to be incapable of maintaining their body temperatures at all. They were presumed to be "slaves" to their environments. Whatever the environmental temperature was, so too was their body temperature.
Since that time, advances in the study of how creatures maintain their internal temperatures (termed: Thermophysiology) have shown that many of the earlier notions of what the terms "warm-blooded" and "cold-blooded" mean, were far from accurate (see below: breaking down cold-bloodedness). Today scientists realize that body temperature types are not a simple matter of black and white. Most creatures fit more in line with a graded spectrum from one extreme (cold-blooded) to another (warm-blooded).
Contents |
[edit] Breaking down cold-bloodedness
Cold-bloodedness generally refers to three separate areas of thermoregulation.
- Ectothermy - This refers to creatures that control body temperature through external means (Greek: ecto = "outside," therm = "heat"), such as the sun, or flowing air/water. For more on this, see below.
- Poikilothermy - This refers to creatures whose internal temperatures vary, often matching the ambient temperature of the immediate environment (Greek: poikilos = "varied," therm = "heat").
- Bradymetabolism - This term refers to creatures with a high active metabolism and a considerably slower resting metabolism (Greek: brady = "slow," metabol = "to change"). Bradymetabolic animals can often undergo dramatic changes in metabolic speed, according to food availability and temperature. Many bradymetabolic creatures in deserts and in areas that experience extreme winters are capable of "shutting down" their metabolisms to approach near-death states, until favourable conditions return (see hibernation and estivation).
Few creatures actually fit all three of the above criteria. Most animals use a combination of these three aspects of thermophysiology, along with their counterparts (endothermy, homeothermy & tachymetabolism) to create a broad spectrum of body temperature types. Most of the time, creatures that use any one of the previously defined aspects are usually pigeon-holed into the term cold-blooded.
Physiologists also coined the term heterothermy for creatures that exhibit a unique case of poikilothermy.
[edit] Types of temperature control
Examples of temperature control include:
- Snakes and lizards sunning themselves on rocks.
- Fish changing depths in the water column to find a suitable temperature.
- Desert animals burrowing beneath the sand during the day.
- Insects that warm their flight muscles by vibrating them in place.
- Dilating or constricting peripheral blood vessels to adapt more or less quickly to the ambient temperature.
Many homeothermic, or warm-blooded, animals also make use of these techniques at times. For example, all animals are at risk of overheating on hot days in the desert sun, and most homeothermic animals can shiver.
Poikilotherms often have more complex metabolisms than homeotherms. For an important chemical reaction, poikilotherms may have four to ten enzyme systems that operate at different temperatures. As a result, poikilotherms often have larger, more complex genomes than homeotherms in the same ecological niche. Frogs are a notable example of this effect.
Because their metabolism is so variable, poikilothermic animals do not easily support complex, high-energy organ systems such as brains or wings. Some of the most complex adaptations known involve poikilotherms with such organ systems. One example is the swimming muscles of Tuna, which are warmed by a heat exchanger. In general, poikilothermic animals do not use their metabolisms to heat or cool themselves. For the same body weight poikilotherms need ⅓ to 1/10 of the energy of homeotherms. They therefore eat only ⅓ to 1/10 of the food needed by homeothermic animals.
Some larger poikilotherms, by virtue of their substantial volume to surface area ratio, are able to maintain relatively high body temperatures and high metabolic rates. This phenomenon, known as gigantothermy (inertial homeothermy), has been observed in sea turtles and great white sharks, and was most likely present in many dinosaurs and ancient sea reptiles (such as ichthyosaurs and plesiosaurs). For example, some species of sea turtles are homeothermic some of the time. They float on the surface of the ocean to absorb heat and then, after submerging again, stay homeothermic for periods of time because of their sheer size. During long periods of time underwater their body temperature may decrease, depending on the temperature of the surrounding water. Their body temperature may also decrease when they float on the surface of the ocean at night, depending on the surrounding temperature.
However, large dinosaurs are not poikilotherms, but homeotherms (homeothermic all the time) because of their large bodies.
[edit] Ecological niches
It is comparatively easy for a poikilotherm to accumulate enough energy to reproduce. Poikilotherms in the same ecological niche often have much shorter lifetimes than homeotherms: weeks rather than years.
This energy difference also means that a given niche of a given ecology can support three to ten times the number of poikilothermic animals as homeothermic animals. However, in a given niche, homeotherms often drive poikilothermic competitors to extinction because homeotherms can gather food for a greater fraction of each day.
Poikilotherms succeed in some niches, such as islands, or distinct bioregions (such as the small bioregions of the Amazon basin). These often do not have enough food to support a viable breeding population of homeothermic animals. In these niches, poikilotherms such as large lizards, crabs and frogs supplant homeotherms such as birds and mammals.
[edit] See also
- Warm-blooded for organisms that fall in between both categories.