Clark-Ocone theorem

From Wikipedia, the free encyclopedia

In mathematics, the Clark-Ocone theorem is a theorem of stochastic analysis. It expresses the value of some function F defined on the classical Wiener space of continuous paths starting at the origin as the sum of its mean value and an Itō integral with respect to that path.

[edit] Statement of the theorem

Let C_{0} ([0, T]; \mathbb{R}) (or simply C0 for short) be classical Wiener space with Wiener measure γ. Let F : C_{0} \to \R be a BC1 function, i.e. F is bounded and Fréchet differentiable with derivative \mathrm{D} F : C_{0} \to \mathrm{Lin} (C_{0}; \mathbb{R}) bounded. Then

F(\sigma) = \int_{C_{0}} F(p) \, \mathrm{d} \gamma(p) + \int_{0}^{T} \mathbb{E} \left\{ \left. \frac{\partial}{\partial t} \nabla_{H} F_{t} (-) \right| \mathcal{F}_{t} \right\} (\sigma) \, \mathrm{d} \sigma_{t}.

In the above

[edit] Integration by parts on Wiener space

The Clark-Ocone theorem gives rise to an integration by parts formula on classical Wiener space, and to write Itō integrals as "divergences":

Let B be a standard Brownian motion, and let L_{0}^{2, 1} be the Cameron-Martin space for C0 (see abstract Wiener space. Let V : C_{0} \to L_{0}^{2,1} be such that

\dot{V} = \frac{\partial V}{\partial t} : [0, T] \times C_{0} \to \mathbb{R}

is in L2(B) (i.e. is Itō integrable, and hence is an adapted process). Let F : C_{0} \to \mathbb{R} be BC1 as above. Then

\int_{C_{0}} \mathrm{D} F (\sigma) (V(\sigma)) \, \mathrm{d} \gamma (\sigma) = \int_{C_{0}} F (\sigma) \left( \int_{0}^{T} \dot{V}_{t} (\sigma) \, \mathrm{d} \sigma_{t} \right) \, \mathrm{d} \gamma (\sigma),

i.e.

\int_{C_{0}} \left\langle \nabla_{H} F (\sigma), V (\sigma) \right\rangle_{L_{0}^{2, 1}} \, \mathrm{d} \gamma (\sigma) = - \int_{C_{0}} F (\sigma) \mathrm{div} V (\sigma) \, \mathrm{d} \gamma (\sigma),

where the "divergence" \mathrm{div} V : C_{0} \to \mathbb{R} is defined by

\mathrm{div} V (\sigma) := - \int_{0}^{T} \dot{V}_{t} (\sigma) \, \mathrm{d} \sigma_{t}.

[edit] See also