Carlson symmetric form

From Wikipedia, the free encyclopedia

In mathematics, the Carlson symmetric forms of elliptic integrals, RC, RD, RF and RJ are defined by

RC(x,y) := \frac{1}{2} \int_0^\infty (t+x)^{-1/2} (t+y)^{-1}\,dt
RD(x,y,z) := \frac{3}{2} \int_0^\infty (t+x)^{-1/2} (t+y)^{-1/2} (t+z)^{-3/2}\,dt
RF(x,y,z) : \frac{1}{2} \int_0^\infty (t+x)^{-1/2} (t+y)^{-1/2} (t+z)^{-1/2}\,dt
RJ(x,y,z,p) := \frac{3}{2} \int_0^\infty (t+x)^{-1/2} (t+y)^{-1/2} (t+z)^{-1/2} (t+p)^{-1}\,dt