Talk:Canonical commutation relation

From Wikipedia, the free encyclopedia

[edit] Question

Anyone read Dirac's book on QM? I'm missing something on this derivation. -ub3rm4th
Quoted (section 22, page 93):

(\frac{\partial}{\partial q_r})^* \left.\psi\right\rangle^*  = e^{-i\gamma}\frac{\partial}{\partial q_r} \left.\psi\right\rangle  = e^{-i\gamma}\frac{\partial}{\partial q_r} e^{i\gamma}\left.\psi\right\rangle^*

showing that

(\frac{\partial}{\partial q_r})^* = e^{-i\gamma}\frac{\partial}{\partial q_r} e^{i\gamma}

or, with the help of \frac{\partial}{\partial q_r}f - f\frac{\partial}{\partial q_r} = \frac{\partial f}{\partial q_r},

(\frac{\partial}{\partial q_r})^* = \frac{\partial}{\partial q_r} + i\frac{\partial\gamma}{\partial q_r}

[edit] Question, more urgent!

\frac{\partial}{\partial q_r} \left. \psi\right\rangle = 0

Why?